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1.0Ilssue

The Northeast Skate Complex Fishery Management Plan (FMP) uses a three year running average of fall
and spring (for little skate) survey biomass to determine Allowable Biological Catch (ABC). Setting the
ABC for the 2010 and 2011 fishing years, Amendment 3 uses the 2006-2008 surveys by applying the
catch/biomass median values which were derived using data processing methods developed by the Data
Poor Assessment Workshop (NEFSC 2009) and analytical methods approved by the Council’s Scientific
and Statistical Committee (SSC) in February 2009
(http://www.nefmec.org/tech/Reports/Reports%20t0%20Council%202009/Skates/SSCFeb09%20skates%2
0 7 .pdf).

In this February 2009 analysis, future biomass tended to increase more often than not and by a greater
amount when the catch/biomass ratio was less then the median, and vice versa. Based on this analysis,
the SSC approved using the median catch/biomass ratio and the three year average stratified mean survey
biomass for setting an aggregate skate ABC. Except for a minor modification to account for differences
in sampling strata with the FSV Bigelow, this document does not propose any adjustments and focuses on
the method for calibrating FSV Bigelow biomass indices to FSV Albatross IV units.

To use the 2009 and 2010 FSV Bigelow survey data in the ABC specification, the survey data need to be
adjusted to FSV Albatross units (or vice versa with some additional analysis of the catch/biomass time
series). A base model approach was developed, presented, and reviewed by a special Stock Assessment
Workshop (see supporting document “Estimation of Henry B. Bigelow calibration factors” The August
2009 peer review recommended (http://www.nefsc.noaa.gov/nefsc/saw/pdfs/VesselCalibrationReview-
Consensus%20Report Aug%2014_09.pdf) that the method be further developed and reviewed in
individual stock assessments, many of which have applied a length-based approach when the relative
efficiency in the calibration data appears to vary with lengthl. Other species where a length-based
approach has been applied are cod, haddock, yellowtail flounder, red hake, offshore hake, silver hake,
loligo (Brooks et al. 2010 and NEFSC 2011), and winter flounder (analyses pending and may include
region and season as explanatory factors).

This document includes a comparative analysis of three models, one of which the SSC should approve for
use in setting skate ABC and potentially for making status determination.

' This outcome appears to be a common phenomenon for flatfish and other fish that hug the bottom due to
the effect that FSV Albatross “cookies’ had on catches of these fish.
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2.2 Figures

Figure 1.

Figure 2.

Estimated relative catch efficiency (top) and dispersion parameter (bottom) from the best beta-
binomial model where relative catch efficiency is modeled as a a penalized thin-plate
regression spline (solid red line) or orthogonal polynomial (solid black line) smoother of length
and from separate models fit to data in each length class (gray points). Dotted lines and vertical
gray lines represent respective approximate 95% confidence intervals. Horizontal gray line in
top plots represents equal efficiency of the Henry B. Bigelow and Albatross IV..................... 17

Randomized quantile residuals of the best performing model (as measured by AICc, see Table
1) for Acadian redfish in relation to the predicted number captured by the Henry B. Bigelow
(left), the total number of fish captured at a station (middle), and their normal quantiles (right).

Figure 3. Estimated relative catch efficiency (top) and dispersion parameter (bottom) by season and

region (columns) from the best beta-binomial model where relative catch efficiency is modeled
as a a penalized thin-plate regression spline smoother of length (solid red line) and from
separate models fit to data in each length class (gray points). Dotted red lines and vertical gray
lines represent approximate 95% confidence intervals. Horizontal gray line in top plots

Figure 4. Comparison of converted FSV Bigelow catches to FSV Albatross units on 2008 calibration
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Figure 5.Comparison of 2008 calibration survey and calibrated FSV Bigelow length frequencies. .......... 31

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Smooth skate for shrimp survey strata — correlation between FSV Albatross spring (left) and
fall (right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line calculated by EXCel.......ccccoiiiiiiieiiiiiiiitiiiiieccceecse et 39

Thorny skate for scallop shrimp strata — correlation between FSV Albatross spring (left) and
fall (right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line calculated by EXCel.......ccccoiviiiieininiiiiiiiirccceecee et 40

Little skate for MA DMF strata — correlation between FSV Albatross spring (left) and fall
(right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line calculated BY EXCeL .. iiusimisimmmmmismmmmsimemsmsssnesorssssrsssnssssssensassaessrssessssssens 46

Thorny skate for MA DMF strata — correlation between FSV Albatross spring (left) and fall
(right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line calculated by EXCel........cccouiiviiiiiiniiiiiiiiccccee e 47
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Figure 10. Winter skate for MA DMF strata — correlation between FSV Albatross spring (left) and fall
(right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line calculated by EXCel.......ccccviiiiiiiiniiiiiiiecceee e 48

Figure 11. Barndoor skate for scallop survey strata — correlation between FSV Albatross spring (left) and
fall (right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line ealeulated bY BEXCeli o unmun sussmaomanssss s ssoassmsessmsmminms smmms 53

Figure 12. Little skate for scallop survey strata — correlation between FSV Albatross spring (left) and fall
(right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
ihe trend line-caleculaled by Baesl. ommmamnommmmmmunasimsanssmsnsssemsmsemsmspussssis 54

Figure 13. Rosette skate for scallop survey strata — correlation between FSV Albatross spring (left) and
fall (right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line calculated by EXCel.......ooouiiiiiiiiiiiiieieee e e 55

Figure 14. Wainter skate for scallop survey strata — correlation between FSV Albatross spring (left) and
fall (right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line calculated by EXCel........ccoooiriiiiiiiiiiiiieie s 56

Figure 15. Clearnose skate for NEAMap strata — correlation between FSV Albatross spring (left) and fall
(right) surveys and calibrated FSV Bigelow data with the NEAMap spring and fall trawl
survey. Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3
(SCASOM, TEEIOMN). ..eeuvieuierieieetisite st sttt e st e e sh e st sr e e b e r e s s e e r e s bt e an e sbe e b e s r e e sa e s anesreesbesbeesnesneennes 62

Figure 16. Little skate for NEAMap strata — correlation between FSV Albatross spring (left) and fall
(right) surveys and calibrated FSV Bigelow data with the NEAMap spring and fall trawl
survey. Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3
(SEASOM, TEZIOMN). 1ee.uverurierueeitreirtesteestesreesaessreesteesseeseaeesseessseeseesseesbeessseesseessseensessnsaessnessesassennnes 63

Figure 17. Winter skate for NEAMap strata — correlation between FSV Albatross spring (left) and fall
(right) surveys and calibrated FSV Bigelow data with the NEAMap spring and fall trawl
survey. Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3
(SCASOM, TEGIOMN). .vevvieuriruieriesteetesteestestesteeseestesseesseaseestsessaesseessesseensesseensessaesseeseenseebeessensessenssenses 64

Figure 18. Any skate for SMAST scallop strata — correlation between FSV Albatross spring (left) and fall
(right) surveys and calibrated FSV Bigelow data with the scallop summer dredge survey.
Baseline calibration = Model 1, Length based = Model 2, Area based = Model 3 (season,
region). Pearson correlation coefficients (r) are calculated by weighting observations by the
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inverse of the sum of their variance on the means. Therefore the r values will be different than
the trend line calculated by EXCEl.......cccvuiuiuiuiiiiiiieiecicecectcseeee e s e 66

Figure 19. Clearnose skate: Differences in annual stratified mean biomass (left) and CVs (right) for
standard strata sets sampled by the FSV Albatross (All Strata) and by the FSV Bigelow (Strata
sampled by HBB). .......cccccuiiinmrrinienseinininnssssssesesesessesssessssssssssessssssesssssesssssesssssasnssesessssns 69

Figure 20. Little skate: Differences in annual stratified mean biomass (left) and CVs (right) for standard
strata sets sampled by the FSV Albatross (All Strata) and by the FSV Bigelow (Strata sampled
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Figure 21. Barndoor skate: Differences in annual stratified mean biomass (left) and CVs (right) for
standard strata sets sampled by the FSV Albatross (All Strata) and by the FSV Bigelow (Strata
SATAPIET DY HBB). susussssusmussnsnsnsusssionswsniss sodssissasn smnssnenenams assossnensmsnsrssmoemes twsbases s ress s sss semssssas 70

Figure 22. Smooth skate: Differences in annual stratified mean biomass (left) and CV:s (right) for
standard strata sets sampled by the FSV Albatross (All Strata) and by the FSV Bigelow (Strata
sampled by HBB). ........c.coiiiiiiiiciiiiee ettt ettt et et e e e e 70

Figure 23. Thorny skate: Differences in annual stratified mean biomass (left) and CVs (right) for
standard strata sets sampled by the FSV Albatross (All Strata) and by the FSV Bigelow (Strata
sampled by HBB). ........c.ccciiiiieiiicictee ettt st et e e et e e s e e es e 71

Figure 24. Winter skate: Differences in annual stratified mean biomass (left) and CVs (right) for standard
strata sets sampled by the FSV Albatross (All Strata) and by the FSV Bigelow (Strata sampled

DY HBB). oottt ettt eeneees 71
Figure 25. Revised biomass time series and reference points, consistent with strata sampled by the FSV
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2.3 Maps

Map 1. Selected survey strata for the summer shrimp trawl survey (shaded) and the spring/fall bottom
trawl survey (red outline) showing catches of smooth skate (kg/tow) from 1990 to 2009. Tows
within the outlined strata for the respective surveys were used for external validation of the
calibration MOdel TESUILS. .........ccoiiiviriiiriricieceeccc ettt ettt 37

Map 2. Selected survey strata for the summer shrimp trawl survey (shaded) and the spring/fall bottom
trawl survey (red outline) showing catches of thorny skate (kg/tow) from 1990 to 2009. Tows
within the outlined strata for the respective surveys were used for external validation of the
calibration Model FESULLS. ..........ooiiiiiriiiiiiee et 38

Map 3. Comparison of MA DMF fall survey stations and strata with selected inshore spring/fall bottom
trawl survey used for external validation of the calibration model results..............cococvvveveven.... 42

Map 4. Selected survey strata for the MA DMF spring trawl survey and the spring bottom trawl survey
(red outline) showing catches of little skate (kg/tow) from 1979 to 2009. Tows within the
outlined strata for the respective surveys were used for external validation of the calibration
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Map 5. Selected survey strata for the MA DMF spring trawl survey (shaded) and the spring bottom trawl
survey (red outline) showing catches of thorny skate (kg/tow) from 1979 to 2009. Tows within
the outlined strata for the respective surveys were used for external validation of the calibration
MOAE] TESUILS. ...ttt ettt e et et et eae e e e e e e e e e 43
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Map 6.

Map 7.

Map 8.

Map 9.

Map 10.

Map 11.

Map 12.

Map 13.

Map 14.

Map 15.
Map 16.

Map 17.

Selected survey strata for the MA DMF spring trawl survey (shaded) and the spring bottom trawl
survey (red outline) showing catches of winter skate (kg/tow) from 1979 to 2009. Tows within
the outlined strata for the respective surveys were used for external validation of the calibration
MOAE] TESULLS. ...eviiiiiitiiirc et r e s b e be e e e reese e e ebeersereereensensens 43

Selected survey strata for the MA DMF fall trawl survey and the fall bottom trawl survey (red
outline) showing catches of little skate (kg/tow) from 1979 to 2009. Tows within the outlined
strata for the respective surveys were used for external validation of the calibration model
HRSRTITURS . oo oo oo 5053055 6, 5550 5. A5 6 5 5 A A SRR 55 43 A AR5 4 A mmms s s s e 44

Selected survey strata for the MA DMF fall trawl survey (shaded) and the fall bottom trawl
survey (red outline) showing catches of thorny skate (kg/tow) from 1979 to 2009. Tows within
the outlined strata for the respective surveys were used for external validation of the calibration
MOAE] TESUILS. ...ttt et sb e ebeebeereebesbesneeneennas 4

Selected survey strata for the MA DMF fall trawl survey (shaded) and the fall bottom trawl
survey (red outline) showing catches of winter skate (kg/tow) from 1979 to 2009. Tows within
the outlined strata for the respective surveys were used for external validation of the calibration
TERETNS], FRSTIMRL, somrssonnonamn onsoseie oo otk 656 5 00K i A5 50.50 55 baSrmmmmemns s s 45

Selected survey strata for the summer scallop dredge survey (shaded) and the fall bottom trawl
survey (red outline) showing catches of barndoor skate (kg/tow) from 1985 to 2009. Tows
within the outlined strata for the respective surveys were used for external validation of the
calibration MOdel FESUILS. ......cvcviiiiiiiiiiiiece et sbe e beeareenrens 50

Selected survey strata for the summer scallop dredge survey (shaded) and the spring/fall bottom
trawl survey (red outline) showing catches of little skate (kg/tow) from 1985 to 2009. Tows
within the outlined strata for the respective surveys were used for external validation of the
calibration MOdel TESULILS. .......cceviiiiiieiiiiee e 51

Selected survey strata for the summer scallop dredge survey (shaded) and the spring/fall bottom
trawl survey (red outline) showing catches of rosette skate (kg/tow) from 1985 to 2009. Tows
within the outlined strata for the respective surveys were used for external validation of the
calibration MOdel TESULLS. ..........ccuviiiiiiiiiieiee e 51

Selected survey strata for the summer scallop dredge survey (shaded) and the spring/fall bottom
trawl survey (red outline) showing catches of thorny skate (kg/tow) from 1985 to 2009. Tows
within the outlined strata for the respective surveys were used for external validation of the
calibration MOdel TESULILS. .........eoiriiiieiiieiei e e 52

Selected survey strata for the summer scallop dredge survey (shaded) and the fall bottom trawl
survey (red outline) showing catches of winter skate (kg/tow) from 1985 to 2009. Tows within
the outlined strata for the respective surveys were used for external validation of the calibration
MOAEL TESULLS. ..ottt st st e b e s be b e beenreenas 52

Maps of primary and replacement sampling stations in gridded NEAMap survey during 2010.58

Selected survey strata for the spring/fall bottom trawl survey (red outline) showing catches of
clearnose skate (kg/tow) from 2007 to 2010, used to compare with the NEAMap spring and fall
trawl survey. Tows within the outlined strata for the respective surveys were used for external
validation of the calibration odel FESUIE. .uummsmssamsmummmmisssssssmms s w8 60

Selected survey strata for the spring/fall bottom trawl survey (red outline) showing catches of
little skate (kg/tow) from 2007 to 2010, used to compare with the NEAMap spring and fall
trawl survey. Tows within the outlined strata for the respective surveys were used for external
validation of the calibration model 1eSUILS. ..........cccoviriririiniiini e 60
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Map 18. Selected survey strata for the spring/fall bottom trawl survey (red outline) showing catches of
winter skate (kg/tow) from 2007 to 2010, used to compare with the NEAMap spring and fall
trawl survey. Tows within the outlined strata for the respective surveys were used for external
validation of the calibration model results. ............cccoerririiicririeceeeeeece e 61
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3.0 Development and analysis of skate calibration models

Building on the methods developed and approved during the August 2009 SAW review (see supporting
document “Estimation of Henry B. Bigelow calibration factors™) and published in Miller et al 2010, the
Skate PDT developed and evaluated alternative models that may be more accurate and perform better for
setting Skate ABC and for determining status. The three models are described below in increasing order
of complexity.

3.1 Model 1 - Aggregate abundance and biomass catch efficiency by
species

Model 1 is a base model published in Miller et al (2010) that estimates the relative catch efficiencies
(aggregated over length) of barndoor, clearnose, little, smooth, thorny, and winter skates. Separate
calibration models are used by season for little and winter skates. The catch efficiency for little skate was
assumed for rosette skate, because of insufficient comparative catch data. Furthermore, there was no
attempt to account for variation in swept area among tows or whether length measurements were taken
only from a subsample of the catch on a given tow. This is the basis for the data that the NEFSC released
to Mr. John Whiteside in response to a FOIA request and for the data used by the NEFSC on January 13,
2011 to determine skate status in 2010. No changes to this model were made during the PDT analysis.

3.2 Model 2 — Aggregate species size based catch efficiency

Model 2 accounts for length effects, variation in swept area among tows, and whether length
measurements were taken only from a subsample of the catch on a given tow. The model is described in
the “A hierarchical model for relative catch efficiency from gear selectivity and calibration studies”
manuscript by Miller (2011, ms). In this manuscript, Miller fits the model to data for Acadian redfish,
black sea bass, Atlantic cod, haddock, summer flounder, and winter flounder. Like Model 1, the basic
model treats the relative catch efficiency of the two gear/vessels as a beta binomial parameter. However,
the data used to fit this model for skates were aggregated across all species in the skate complex by one
cm length class, vessel, and station. The reason that it may be appropriate to pool across skate species is
that skates may behave more differently at various sizes than they do amongst species due to similar
morphology, ecological characteristics, and general behavior. Due to low catches of large fish, catches
with lengths greater than 94 cm were assigned a common length of 107 cm, the mean length of fish
captured at these large sizes.

The beta-binomial model is hierarchical in nature. It is based on assuming a binomial model at each

station for number captured at length by the FSV Bigelow conditional on the number captured by both
vessels,

N, (L)1 Bin(N, (L), p, (L)

5

and that the probability parameter is a beta distributed random variable across stations,
p,(L)0 Beta(z(L),$(L))
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The mean probability of capture by the Bigelow (7r), taking into account the ratio of swept area (SA) and
sampling fraction (SF) is modeled as

1og[lfﬂ} =log[ p(L)]+log (84, /SA4,)+log(SF, / SF,)

7(L)

where p (L) is the relative catch efficiency which is modeled as a smooth function of length, and

SA4, and SF, are the swept areas and sampling fractions for vessel k. This parameterization of the
k k p pling p
probability of capture derives from the assumption that the ratio of expected catches is

n(L) _E(Ny(L)) _q,(L)SA4SFS(L) _ .\ S4,SF,
1-7(L) E(N,(L)) q,(L)S4,5F,5(L) =r( )m

where 0 (L) is the density of available fish (cf. Lewy et al. 2004 and Cadigan and Dowden 2010).

Following Miller (submitted), two different dispersion models were considered,
log[¢(L)] =q, log (SAB /SAA)+ a, log(SFB /SFA)+ go(L)

and

log[ #(L) | =@ (L) SF,S4,+ p(L)SF,S4, |

where (D(L) is also a smooth function of length. The latter dispersion model is based on a derivation of

the beta-binomial that assumes that the expected catches at length arise from a particular type of gamma
distribution (see Miller submitted).

The smoothers, log [ ,0( L)] and (D(L) , have the same general form
D
f(L)=2.8g/(L)
i=0

where D is the number of terms, g, (L) are uncorrelated functions of length and /f are estimated

parameters. Following Miller (submitted), we considered two types of smoothers : orthogonal
polynomials or regression splines. The smoothers allow the form of the curve relating length to relative
catch efficiency to be estimated from the data. When they are used for statistical modeling, the
parameters that define the curve are estimated and generally, the fewer the number of parameters (or
model degrees of freedom) generates a smoother fit through the data. For orthogonal polynomials the
number of parameters is set by the analyst, but for the regression splines, the “smoothness” of the curve
can be estimated by incorporating a penalty during the estimation process. There are various types of
penalties that can be used, but their form is beyond the scope of this document (see Wood 2006). The
type of penalty used in the present analyses is widely used for fitting generalized additive models and are
functions of the second derivatives of the regression spline.

Our final Model 2 was chosen from a large set of models where length effects on relative catch efficiency
and the beta-binomial dispersion parameter, ¢, were modeled with two classes of smoothers. The set of

models we considered is defined similarly to those for each of the 6 species by Miller (submitted). A
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suite of models were fit assuming orthogonal polynomial smoothers with varying model degrees of
freedom for the smoother of length and varying assumptions on the submodel for the beta-binomial
variance parameter. Several regression spline model were also fit with varying assumptions on the
submodel for the beta-binomial variance parameter, but the model degrees of freedom associated with the
length smoother is estimated simultaneously for these models. The total set of models were compared

based on a sample size corrected version of the Akaike Information Criterion (AIC; Hurvich and Tsai

1989). The model with the best AIC., was chosen as Model 2. However, Model 2 cannot be compared to
Model 1 in this way because of the differences in the data used to fit the two models.

3.3 Model 3 — Aggregate catch efficiency by length, region, and
season

The set of models considered for determining our Model 3 included length effects on relative catch
efficiency like Model 2, but also accounted for effects of survey season (spring, fall, or non-random site-
specific stations), or region (North: Gulf of Maine and northern Georges Bank or South: southern
Georges Bank , southern New England and Mid-Atlantic, Table 4). We also were interested in
determining whether there were differences by depth strata (shallow and deep depth categories in Table
5), but there was insufficient information for some subsets of data to fit corresponding models. Other
than including these covariates, the data used to fit this model are identical to those used to fit Model 2.
Furthermore, the type of smoother used for our chosen Model 2 was also used by season, and region to fit
Model 3. Ultimately, there were two models fitted. The first model included seasonal effects and the

second included effects of region within season. These models were compared to each other using AIC,
to determine a final Model 3 and we also used this criterion to compare these models with those in the set
from which Model 2 was chosen.

Region is essentially a proxy for bottom type with hard bottom and gravelly sand predominating in the
north and sand and sandy mud predominating in the south. Season may reflect differences in net
avoidance behavior affected by temperature or other factors. The PDT considered and attempted to
explain the relative catch efficiencies characterized by depth, but insufficient samples to fit the data at a
finer resolution than region and season.

4.0 Comparison of calibration coefficients
4.1 Statistical fit

4.1.1 Model 1 - Aggregate abundance and biomass catch efficiency by species

The results and statistical fit of Model 1 are shown in the table below and described in Miller et al (2010).
The calibration coefficient estimates have small standard errors, but account for the relative catch
efficiency for the size frequencies of observed skates in the spring, summer, and fall 2008 calibration
studies. Note again that these estimates do not account for differences in swept areas of the two vessels.
As such they are not directly comparable to the relative catch efficiencies for Models 2 and 3.
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Table 1. Calibration coefficients for seven skate species captured during NEFSC bottom trawl surveys.

Species Calibration Coefficient (Std Err) Comment

Little Leucoraja erinacea 2.785519 (0.32) Spring Survey

Winter Leucoraja ocellata 2.174334 (0.31) Fall Survey

Barndoor Dipturus laevis 3.661128 (0.51) Fall Survey

Thorny Amblyraja radiate 3.626359 (0.58) Fall Survey

Smooth Malacoraja senta 4.449518 (0.67) Fall Survey

Clearnose Raja eglanteria 6.189401 (0.81) Fall Survey
Based on the calibration
coefficient for little skate

- in the fall survey
Rosette Leucoraja garmani 8.813973 (0.98) comparisons

4.1.2 Model 2 - Aggregate species size based catch efficiency

Before we pooled fish of lengths greater than 94 cm, we fit the same models to the unpooled data. Using
these data, the best fit model, as measured by AIC, , was an orthogonal polynomial (represented by the
black smoothed line in the figure below) with 10 parameters to describe the smooth length effects and no
length effects on the dispersion parameter (Table 2). Like other species, particularly flat fish, the relative
catch efficiency of skates (any species) varies by length. Using either a spline smoother or orthogonal
polynomial model, the relative catch efficiency is substantially higher at lengths below 40 cm and also at
lengths greater than 94 cm (Figure 1). At small size (i.e. below 40 cm) the skate catches are composed of
mainly little skate. Examining the results, the Skate PDT felt that this model fit the data best, particularly
at small size, but that the larger skates (i.e. > 94 cm) could be pooled to reduce the effect of large variance
on the smoother.

When skates greater than 94 cm were pooled however, the spline smoother with 6.8 estimated effected
parameters to describe the length effects on the relative catch efficiency and 8.8 total parameters fit best
with respect to AIC, (rank 1 in Table 3). However, the performance of the best fit model was only
marginally better than three other models where orthogonal polynomials were assumed. The models
where the form of the beta-binomial dispersion parameter is based on a gamma assumption on the mean
catches made by each vessel performed very poorly compared to other models and are not considered
further.
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Figure 1. Estimated relative catch efficiency (top) and dispersion parameter (bottom) from the best beta-binomial
model where relative catch efficiency is modeled as a a penalized thin-plate regression spline (solid red
line) or orthogonal polynomial (solid black line) smoother of length and from separate models fit to data
in each length class (gray points). Dotted lines and vertical gray lines represent respective approximate
95% confidence intervals. Horizontal gray line in top plots represents equal efficiency of the Henry B.
Bigelow and Albatross 1V.
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Table 2. Model 2 — size based catch efficiency: Model type (thin-plate regression spline, PS, orthogonal
polynomial, OP), numbers relative catch efficiency, dispersion, and total degrees of freedom, dispersion

covariates, and log-likelihood for best performing models based on AIC,.
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Rank Model Type #ppars |#® Length 1) LL # AIC, A(AIC)
pars Covariates parameters
! op 10 1 SF -7536.64| 12 15097.31 0)
2 op 10 2 SF -7536.3 13| 15098.64 1.33
3 op 11 1 SF -7536.39 13 15098.82] 1.51]
4 oF 10 1 SF,SA -7536.51] 13| 15099.05 1.74
5 PS 8.16 0 SF -7538.6] 11.1619| 15099.56 2.25)
6 op 9 1 SF -7538.97| 11 15099.97, 2.66)
4 Oop 11 2 SF -7536.07 14 15100.18 2.87
8 oF 10 4 SF -7535.15 15 15100.35 3.04
- op 10 2 SF, SA -7536.15 14 15100.35) 3.04]
1a op 10 3 SF -7536.17| 14 15100.39 3.08

Table 3. Model 2 — size based catch efficiency with pooled lengths > 94 cm: Model type (thin-plate regression
spline, SP, orthogonal polynomial, OP), numbers relative catch efficiency, dispersion, and total degrees of

freedom, dispersion covariates, and log-likelihood for the 10 best performing models based on AICk.

Model #p # ¢ length ¢ # Total 1L ATe A(
Rank | Type | Pparameters | parameters | Covariates | parameters ¢ | AICy)
1 SP 6.80 1 SF 8.80 - 15063.58
7522.98 0
2 OP 9 1 SF 11 - 15063.73
7520.85 0.15
3 OP 10 1 SF 12 - 15064.74
7520.35 1.16
4 OP 9 2 SF 12 - 15065.01
7520.49 1.43
5 SP 6.54 10.24 SF 16.78 - 15065.14
7515.75 1.56
6 Sp 6.81 1 SF, SA 9.81 - 15065.42
7522.88 1.84
7 OP 9 1 SF, SA 12 - 15065.56
7520.76 1.98
8 OP 10 2 SF 13 - 15066.04
7520.00 2.46
9 OP 9 7 SF 17 - 15066.07
7516.00 2.49
10 OoP 11 1 SF 13 - 15066.51
7520.24 2.93
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4.1.3 Model 3 - Aggregate catch efficiency by length, region, and season

Allowing the smoother of length to differ by season and region provided the best overall fit with regard to
AlCc (Table 6). Although the model including seasonal effects only performed much better than Model 2
with an AICc approximately 170 units lower, the model that also included regional effects resulted in a
further reduction in AICc of more than 83 units. Examining Figure 3, there appear to be important trends
in relative catch efficiency at length, particularly by season. This may reflect the relative availability of
species in the spring and fall surveys, particularly little skate. The differences are less by region
(north/south), but may still be important.

In the fall calibration survey, the relative catch efficiency of small skates (< 50 cm) is considerably higher
than larger skates, implying that the FSV Bigelow catches a greater proportion of little skates than the
FSV Albatross. This result is consistent with expectations, because the FSV Albatross trawl uses cookies
(possibly allowing small skates to avoid capture, passing under the trawl) whereas the FSV Bigelow trawl
does not. For larger skates, the estimated relative catch efficiency is about 3 to 4 in the north region and
about 4 to 5 in the south, with a slight increase in relative catch efficiency for pooled skate lengths greater
than 94 cm (mean weighted size 107 cm).

In the spring, the smoother through the relative catch efficiency at length is flatter than it is in the fall. In
the north, the relative catch efficiency varies from 2 to 7 and in the south, the relative catch efficiency
varies between 5 and 15, with a modest increase in relative catch efficiency for small skates. This result
in the spring also comports with expectations, because little skate are caught less frequently in the north
and in the spring.
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Table 4. NEFSC survey strata in north and south regions used in length-based calibration analyses.

North

South

01190-01300
01330-01400
01351
03560
03590-03610
03640-03660

01010-01180
01610-01760
03010-03460
07510-07520
08500-08510

Table 5. NEFSC survey strata in shallow and deep depth areas we were to consider in length-based calibration

analyses.

Shallow

Deep

01010-01020
01050-01060
01090-01100
01130
01160
01190-01210
01230
01250-01260
01330
01390-01400
01610-01620
01650-01660
01690-17000
01730-01740
07510-07520
08500

01030-01040
01070-01080
01110-01120
01140-01150
01170-01180
01220
01240
01270-01300
01340
01351
01360-01380
01630-01640
01670-01680
01710-01720
01750-01760
08510
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Appendix

Letting the full set of calibration factor parameters be & (which depends on the above models used), the
beta-binomial likelihood we maximized is

s M Betala, + Ny ,b,+N, |)( N, +Ng;
J Bij>~j Aif Aij ij

Le.0)-TII] .

=1 j=l Beta (a_}. oD )

where Beta() is the beta function, and N, and N, are the numbers caught at station 7 in length class
J by the Albatross IV and Bigelow, respectively. The likelihood is parameterized with parameters g and
b which are functions of the calibration factor and dispersion parameter ¢,

a; = ”(lf | ‘9)¢(lf |‘9)

and

b, =|1-7(1,16) |4(1,10).

4.2 Advantages and disadvantages of evaluated models

Although the statistical fit to the data for Models 2 and 3 can be compared (see Section 4.1), there are also
some important distinctions that may favor one approach over the other as a reliable indicator of stock
status and standing biomass. The PDT has listed these important advantages and disadvantages along
with important caveats or notes in the table below, for the SSC’s consideration.

It is important to note that the three models are listed in increasing complexity (and number of estimated
parameters). And even accounting for a penalty to fit more parameters, Model 3 (fitted by length, region,
and season) produces the best statistical results, but may be tempered by the qualitative considerations
listed below. How well or poorly the calibrated data fit trends in other surveys (see Section 4.4) may also
be an important consideration for which model should be chosen to set ABC and determine status.

Table 7. Qualitative attributes of three skate calibration models.

Model 1 — Aggregate abundance and biomass by species

Advantages Disadvantages Caveats or notes
Species specific, accounts for Does not account for length, Species identification of skates <
species specific behavior seasonal, or spatial 35 cm may not be appropriately

differences in catchability or | applied to species indices — no
behavior (net avoidance, etc.) | species adjustments in calibration

data/analysis
Easier to apply than more Would not appropriately May be a practical model because it
complicated models account for changes in future | is simpler. More complex models
length frequency may only produce a marginal
improvement.

Requires less parameter estimates | Rosette skate requires use of a | Cannot statistically compare the
proxy (using little skate), due | quality of the fit for Model 1 vs.
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to low sample size

Models 2 and 3

Uses all of the calibration data,
including site specific stations for
some species (little and winter
calibration coefficient models are
seasonal)

Model 2 — Aggregate species abundance by length

Advantages

Disadvantages

Caveats or notes

Accounts for
behavioral/catchability differences
at length, which may be more
important than differences among
similar skate species of similar
lengths

Does not implicitly account
for potential differences in b/c
differences among skate
species.

Species specific differences may be
partially taken into account by
relative species composition at
length (e.g. little and rosette skates
are little, barndoor skates are big)

Uses all of the calibration data,
including site specific stations

Does not account for regional
or seasonal differences that
may be related to bottom type,
temperature, or other factors

Moderately easy to apply

Requires use of length/weight
equation for biomass
estimates and therefore
introduces additional
uncertainty

Requires conversion to non integer
values of abundance at specific
lengths

Would handle changes in future
length frequency (i.e. strong and
weak year classes) more
appropriately than Model 1

Model 3 — Aggregate species abundance by length, region, and se

ason

Advantages

Disadvantages

Caveats or notes

Statistically (lowest AIC), Model
3 fits the data better than Model 2.

Potential for more pooling or
assumptions about the relative
catchability of sizes that were
not observed in the
calibrations in a particular
season and region.

Species specific differences may be
partially taken into account by
relative species composition at
length (e.g. little and rosette skates
are little, barndoor skates are big)
and area (e.g. thorny and smooth
skate are in the Gulf of Maine,
while clearnose and rosette are in
the Mid-Atlantic)

Accounts for
behavioral/catchability (b/c)
differences at length, which may
be more important that differences
among similar skate species of
similar lengths.

Does not implicitly account
for potential differences in b/c
differences among skate
species

Requires conversion to non integer
values of abundance at specific
lengths

Also accounts for regional and
seasonal differences, which may
be related to bottom type,
temperature, or other factors

Does not use site specific
stations, because they were
conducted during the summer
and cannot be applied
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appropriately to the spring
and fall

Would handle changes in future Requires use of length/weight
length frequency (i.e. strong and equation for biomass

weak year classes) more estimates and therefore
appropriately than Model 1 introduces additional
uncertainty
More difficult to apply

4.3 Internal validation with calibration survey data

Another method for examining the best model performance is to compare the 2008 Albatross survey
index to a comparable Bigelow survey index using the calibration data as regular survey data. The results
should be close, since the calibration factors were derived from these data. The model that is closest to the
Albatross value should be the model of choice. The 2008 Bigelow stratified mean number per tow at
length for Models 2 and 3SR (and an intermediate model incorporating just seasonal effects-Model 3S)
and mean weight per tow for Model 1 were calculated and then the calibration coefficients were applied
to the appropriate region/season. To calculate biomass for models 2, 3S and 3SR, the length-weight
coefficients by species and season (when available) from Wigley et al. 2003 were applied to the number
per tow at length.

For winter skate, Model 1 indices were the closest to the Albatross 2008 values for the fall survey while
the spring survey was more variable (Table 8, Figure 4). All models underestimated the fall indices while
the spring was overestimated. For little skate, all models incorporating season as a covariate performed
well (Table 8, Figure 4) although for spring biomass, Model 1 was slightly closer to the Albatross value
than Models 3S and 3SR. The Model 1 results for barndoor skate were closer to the actual value for the
fall survey weight, but the other models fit better for spring and fall number (Table 8 and Figure 4).
Results for thorny skate are more ambiguous, with Model 3S performing better than the others for fall
weight and number, while Model 3SR was better for spring weight and spring number. Model 3S and
3SR generally matched the smooth skate indices better than the other models, except for spring number,
when none of the models performed well. The fall survey indices for clearnose skate were
underestimated by Model 1 while Models 2, 3S and 3SR overestimated both number and weight.
However, Model 3SR performed the best out of the four models (Table 8 and Figure 4). The spring
survey numbers were also closer using Model 3SR while weight was better using Model 1. The rosette
skate abundance indices are more variable than the weight, and the best model varies among the four
indices.

Figure 5shows the length composition from the Albatross 2008 survey and compares the Bigelow survey
with no calibration, as well as the four models. For barndoor skate, the constant calibration model appears
to match the Albatross data better than any of the length-based methods. Any of the length-based models
seem to perform better for clearnose and little skate than the constant. For rosette, smooth and thorny, the
number of fish in the Albatross length frequency makes a comparison difficult. For winter skate, none of
the models really matches the Albatross length composition. All models underestimate the numbers at
length from 60-85cm. The length-based models underestimate the numbers at length from 35-50 cm,
while the Model loverestimates those numbers. All the models are good for the over 85 cm size group
which is a small portion of the calibration survey catches and the abundance of skates in general.
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Table 8. Indices of abundance and biomass from the 2008 fall and spring surveys from the Albatross

survey (AL) and the Bigelow survey (HBB) calibrated using four different models.

AL HBB Model 1 Model 2 Model 3S Model 3SR
Fall Number
winter 3.399 8.088 3.100 2.353 2.354 2.387
little 3.390 32.043 3.254 5.749 3.405 3.442
barndoor 0.435 1.926 0.434 0.557 0.524 0.511
thorny 0.121 1.162 0.307 0.237 0.165 0.189
smooth 0.286 2.000 0.456 0.382 0.278 0.316
clearnose 0.978 4.877 0.729 1.289 1.283 1.122
rosette 0.188 1.196 0.121 0.210 0.101 0.108
Fall Weight
winter 9.623 18.648 8.576 6.090 6.688 6.761
little 1.661 14.092 1.599 2.520 1.653 1.679
barndoor 1.111 4.458 1.218 1.661 1.597 1.578
thorny 0.199 1.160 0.320 0.316 0.306 0.360
smooth 0.100 0.775 0.174 0.151 0.149 0.171
clearnose 1.233 5.582 0.902 1.547 1.635 1.421
rosette 0.029 0.246 0.028 0.042 0.021 0.023
Spring
Number
winter 1.868 13.820 3.616 3.491 3.380 3.380
little 14.616 56.364 18.300 9.883 12.462 12.034
barndoor 0.528 1.502 0.338 0.400 0.375 0.378
thorny 0.187 0.577 0.152 0.132 0.136 0.176
smooth 1.064 1.987 0.453 0.389 0.455 0.693
clearnose 0.634 3.738 0.559 1.109 0.950 0.659
rosette 0.188 0.878 0.285 0.154 0.194 0.169
Spring
Weight
winter 3.037 19.942 5.363 6.617 5.461 5.483
little 6.291 21.170 7.600 3.934 5.011 5.067
barndoor 1.393 2.475 0.676 0.944 0.763 0.888
thorny 0.259 0.831 0.229 0.275 0.225 0.278
smooth 0.345 0.900 0.202 0.191 0.212 0.300
clearnose 0.809 5.089 0.822 1.606 1.327 0.916
rosette 0.029 0.209 0.075 0.032 0.041 0.036
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Figure 5.Comparison of 2008 calibration survey and calibrated FSV Bigelow length frequencies.
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4.4 External validation using alternative surveys

Another important factor in judging which model performs best is comparing its performance against
external data from other surveys which catch adequate amounts of skates and partially overlap or
immediately join adjacent strata in the spring and fall FSV Albatross/Bigelow trawl survey. It is not as
important that the values are of the same magnitude as the spring and fall survey, but that the converted
FSV Bigelow indices are in a similar range of previous values. Ideally, the comparison is best when there
is a high correlation between the comparable survey and the NMFS trawl survey, but this is not necessary.
Even though there may be a small or no correlation, data calibrated with one of the three models which
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fall out of the usual range of the previous time series could be considered to be less meaningful and may
point to errors. Some of the differences may relate to the unique characteristics of the comparison, e.g.
important mismatches in the chosen survey strata, differences in seasons when the surveys occur (e.g.
comparing the summer shrimp survey with the spring and fall trawl survey), changes in the survey timing
(e.g. changing the scallop dredge survey from July/August to May/June in 2009), addition of rock chains
on the dredge, and possibly species identification (i.e. some surveys may not identify species the same
way as the method employed on the NMFS trawl survey).

Except for the NEAMap and SMAST indices of abundance and biomass (only abundance is available for
the SMAST survey because the skate lengths have not been measured and species identification is
difficult), stratified mean indices of abundance were calculated by the usual means using standard
software maintained by the NEFSC. The 2009 and 2010 stratified mean number per tow at length for
Models 2 and 3 and mean weight per tow for Model 1 were calculated and then the calibration
coefficients were applied to the appropriate region/season/length. For Model 3, the two vectors were then
multiplied by the area covered, added together and the divided by the total area covered by both regions.
To calculate biomass for models 2, 2a and 3, the length-weight coefficients by species and season (when
available) from Wigley et al. 2003 were applied to the number per tow at length. The mean abundance
and biomass indices and their CVs for the NEAMap survey were provided by Chris Bonzek at the
Virginia Institute of Marine Science. Similarly, the mean indices of abundance and their CVs for the
SMAST camera survey were obtained from MacDonald (2010). For spring and fall data through 2008
and all other data, the 95% confidence interval on the mean estimate were computed via the usual
method.

The table below provides a summary of species indexed by other surveys and comparable strata in the
spring and fall NMFS trawl surveys.
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Corresponding

Species for

correlation

Corresponding

Table 9. Surveys and species used to compare stratified mean abundance and biomass between surveys and the
NMEFS spring and fall trawl survey.

Spring and. fall

LSurvey . Surveypyears: . analysis Surveystrata survey strata
ASMFC Shrimp 1990-2010 Smooth 04010,04030, 01270,01280,
trawl (summer) Thorny 04050-04080 01370,01380
MA DMF 1979-2010 Little 09110-09360 03460-03560,
(spring, fall) Thorny 03590-03660

Winter
Scallop 1985-1998, Barndoor (fall) 06060-06070, 01010, 01020,
(summer 2000-2010 Clearnose 06100-06110, 01130, 01230,
dredge) & Little 06140-06150, 01250, 01660,
SMAST Rosette 06170-06190, 01690, 01700,
Smooth 06210-06310, 01730, 01740
Thorny 06490-06550,
Winter (fall) 06580-06600
NEAMAP 2007-2010 Clearnose Provided by 03020, 03050,
Little Chris Bonzek 03080, 03110,
Winter 03140, 03170,
03200, 03230,
03260, 03290,
03320, 03350,
03380, 03410,
03440-03450

4.4.1 Shrimp survey (smooth and thorny skates)

These comparable surveys include the NMFS shrimp survey conducted in the Gulf of Maine, which
catches sufficient numbers of smooth and thorny skates. The shrimp survey started measuring finfish in
1985, but not consistently for skates until 1990. Maps of shrimp, fall, and spring survey catches for
smooth and thorny skate are shown in Map 1 to Map 2, including the outlines of the shrimp trawl and the
spring/fall trawl survey strata used in the comparison. Only smooth and thorny skate are caught in
adequate numbers by the Gulf of Maine summer shrimp trawl survey to be useful for comparison.

Certain strata were omitted in the comparison because of inconsistent sampling in the time series. This
inconsistency caused the PDT to omit spring and fall stratum 24 and 26, for example. Stratum 24 while
having significant catches of smooth and thorny skates in the spring and fall survey has a significant
overlap with shrimp survey stratum 412, which is not consistently sampled from year to year. The same
holds true for spring and fall stratum 26, which overlaps inconsistently sampled shrimp stratum 402 and
404. On the other hand, spring and fall stratum 27 half overlaps consistently sampled shrimp stratum
401. So in the final choices, the stratum that were compared with the shrimp survey overlapped shrimp
strata that were consistently sampled and excluded those that were not (which could result in a mis-
leading time series for years when the shrimp strata were not sampled).
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The shrimp trawl survey stratified mean abundance and biomass for smooth and thorny skate were
compared with similarly computed stratified mean indices from the NMFS spring and fall trawl surveys
for the selected strata. The relationships between the annual indices are shown in Figure 6 and Figure 7.

e Calibrated smooth skate abundance and biomass indices are within range of previous NMFS
trawl survey data when the shrimp trawl indices were in a similar range as observed 2009 and
2010. Calibration by all three models give plausible results.

fall the seasonal and regional (area) model gives the highest values.
e Thorny skate calibrations give values that appear to be somewhat low compared with trawl

survey values when the shrimp trawl indices for thorny skate were in similar ranges. This could

be related to a movement into deeper water in the more recent surveys.

Length based smooth skate abundance calibrations give the highest values in the spring, but in the

Map 1. Selected survey strata for the summer shrimp trawl survey (shaded) and the spring/fall bottom trawl survey
(red outline) showing catches of smooth skate (kg/tow) from 1990 to 2009. Tows within the outlined strata
for the respective surveys were used for external validation of the calibration model results.
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Map 2. Selected survey strata for the summer shrimp trawl survey (shaded) and the spring/fall bottom trawl survey
(red outline) showing catches of thorny skate (kg/tow) from 1990 to 2009. Tows within the outlined strata
for the respective surveys were used for external validation of the calibration model results.
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4.4.2 MA DMF spring and fall trawl survey (little, thorny, and winter skates)

The MA DMF spring and fall trawl survey began in 1978, but the inshore strata for the spring and fall
north of Cape Cod were not sampled until 1979. Although there is some overlap in the NMFS inshore
and the MA DMF strata north of Cape Cod (Map 3), the MA DMF sampling occurs inshore of the
sampled NMFS trawl survey strata along the south shore of Cape Cod and Southern MA. Nonetheless,
the PDT felt that there was sufficient relationship between the NMFS trawl inshore strata along the entire
coastline of MA for comparison with the MA DMF stratified mean indices of abundance and biomass for
little, thorny, and winter skates [Map 4 to Map 6 (spring); Map 7 to Map 9 (fall)].

The MA DMF spring and fall trawl survey stratified mean abundance and biomass for little, thorny, and
winter skates were compared with similarly computed stratified mean indices from the NMFS spring and
fall trawl surveys, respectively, for the selected strata. The relationships between the annual indices are
shown in Figure 8, Figure 9, and Figure 10.

e Little skate calibrations appear to give low, but plausible values when compared to similar values
during the MADMF time series.

e Thorny skate calibrations appear to give high, but still plausible values in the spring and
reasonable values in the fall. The differences in the spring may be related to changes in water
temperature and skate distribution along the coastline. The area based calibrations appear to be
more comparable to the time series in the spring.

e There does not appear to be much correlation between winter skate indices from the MA DMF
trawl survey and from the NMFS trawl survey for inshore strata. The interesting feature is that
while winter skate indices of abundance for the offshore strata have increased substantially and
are near target values, the winter skate indices for the inshore NMFS trawl strata (except for the
fall 2010 survey abundance index) and for the MA DMF surveys are in the lowest quartile for the
time series. This could be a migratory, size-related recruitment, or species identification
phenomenon.
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Map 3. Comparison of MA DMF fall survey stations and strata with selected inshore spring/fall bottom trawl

survey used for external validation of the calibration model results.
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Map 4. Selected survey strata for the MA DMF spring trawl survey and the spring bottom trawl survey (red outline)
showing catches of little skate (kg/tow) from 1979 to 2009. Tows within the outlined strata for the
respective surveys were used for external validation of the calibration model results.
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Map 5. Selected survey strata for the MA DMF spring trawl survey (shaded) and the spring bottom trawl survey
(red outline) showing catches of thorny skate (kg/tow) from 1979 to 2009. Tows within the outlined strata

for the respective surveys were used for external validation of the calibration model results.
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Map 6. Selected survey strata for the MA DMF spring trawl survey (shaded) and the spring bottom trawl survey
(red outline) showing catches of winter skate (kg/tow) from 1979 to 2009. Tows within the outlined strata

for the respective surveys were used for external validation of the calibration model results.
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Map 7. Selected survey strata for the MA DMF fall trawl survey and the fall bottom trawl survey (red outline)
showing catches of little skate (kg/tow) from 1979 to 2009. Tows within the outlined strata for the
respective surveys were used for external validation of the calibration model results.
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Map 8. Selected survey strata for the MA DMF fall trawl survey (shaded) and the fall bottom trawl survey (red
outline) showing catches of thorny skate (kg/tow) from 1979 to 2009. Tows within the outlined strata for
the respective surveys were used for external validation of the calibration model results.
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Map 9. Selected survey strata for the MA DMF fall trawl survey (shaded) and the fall bottom trawl survey (red
outline) showing catches of winter skate (kg/tow) from 1979 to 2009. Tows within the outlined strata for
the respective surveys were used for external validation of the calibration model results.
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4.4.3 Scallop dredge survey (barndoor, little, rosette, and winter skates)

The scallop dredge survey is conducted annually in the summer months, July and August through 2007
and June and July beginning in 2008 (NEFSC 2010). The summer scallop dredge survey is a coastwide
stratified random survey ranging from the DelMarVa region in the south to Georges Bank in the north and
east. There is a break in the sampling off Southern New England where mud bottom predominates and
few scallops are found. The scallop survey catches significant numbers of barndoor, little, rosette, and
winter skates. Smooth and thorny skates are also caught with adequate frequency but were not well
represented in the consistently sampled strata that were chosen for this analysis. Clearnose skates are not
frequently observed. There is some question about accurate identification of skate species in the scallop
survey. And for this reason, the PDT deemed the scallop survey catches of clearnose, smooth, and thorny
skates as not being comparable to the catches in the spring and fall trawl survey. Observed catches of
these species were however included in an ANY species category, similar to the procedure applied to the
SMAST survey comparison where skates are not identified by species.

In the summer scallop dredge survey, finfish were not counted in the scallop survey until 1985 and there
also have been changes over time in the sampled strata. For 1985-1998, the number of fish at length were
not counted and therefore only mean abundances could be calculated, but for 2000-2010, the length-
weight equation could be applied to the numbers at length. The 1999 survey was conducted on the FSV
Albatross IV and a commercial vessel, so the annual survey data are in two incompatible data sets and not
really useful for computing mean indices of skate abundance and biomass.

Like the other survey comparisons, the PDT chose strata (see Table 9) that were consistently sampled by
the scallop survey and had significant overlap with sampled strata for the spring and fall trawl survey. In
the Southern New England area, there is a big hole that is no longer sampled by the scallop survey (mud)
and it covers half of trawl strata 105, 106, 109, 110, trawl strata that include tows that catch significant
amounts of skates but cover areas that were inconsistently sampled by the scallop dredge survey. To get a
more direct comparison, these strata were not included. For this same reason, scallop survey strata 33-35,
46, and 47 were also not included. Likewise the scallop strata that overlap Canadian waters are no longer
sampled. Since these scallop strata were not consistently sampled, for this purpose they were not chosen
to compare with the spring and fall survey which also excluded trawl survey strata that overlap the Hague
Line.

After reviewing the relative distributions of skate catches in the summer dredge survey, the PDT felt that
external validation using the scallop survey would only be useful for little, rosette, and thorny skates
comparing the scallop dredge catches with the spring and fall bottom trawl survey (Map 11 to Map 13),
and barndoor and winter skates with only the fall bottom trawl survey (Map 10 and Map 14). Catches of
clearnose and smooth skates in the scallop dredge survey were not frequent enough to provide a
satisfactory comparison with the bottom trawl surveys, but were included in an ANY skate catch
comparison.

The NMFS scallop dredge survey stratified mean abundance and biomass for little, thorny, and winter
skates were compared with similarly computed stratified mean indices from the NMFS spring and fall
trawl surveys, respectively, for the selected strata. The relationships between the annual indices are
shown in Figure 11, Figure 12, Figure 13, and Figure 14.

e  Within the strata associated with the scallop survey, there is a relatively high correlation between
the barndoor skate indices. And while the calibrations for all three models give plausible results,
the calibrated 2010 data are less than the 2009 data, yet the indices on the scallop dredge survey
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increased nearly threefold from 2009 to 2010. Neither the spring nor the fall trawl survey
calibrated indices for any model tracked this increase.

e The calibrations for the little skate abundance and biomass indices give plausible results. The
aggregate (Model 1) calibration gives the highest values in the spring, but the area based
calibration gives the highest values in the fall.

e For rosette skate indices, the models give plausible results but the length based and area based
calibrations appear to fit the scallop survey data better. The baseline (Model 1) calibrations
coefficients in this case were assumed to be equal to those estimated for little skate.

e For winter skate in strata associated with the scallop survey, the baseline (Model 1) and length
based (Model 2) calibrations appear to be more consistent with the winter skate indices in the
scallop survey.

Map 10. Selected survey strata for the summer scallop dredge survey (shaded) and the fall bottom trawl survey (red
outline) showing catches of barndoor skate (kg/tow) from 1985 to 2009. Tows within the outlined strata
for the respective surveys were used for external validation of the calibration model results.
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Map 11. Selected survey strata for the summer scallop dredge survey (shaded) and the spring/fall bottom trawl
survey (red outline) showing catches of little skate (kg/tow) from 1985 to 2009. Tows within the outlined
strata for the respective surveys were used for external validation of the calibration model results.
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Map 12. Selected survey strata for the summer scallop dredge survey (shaded) and the spring/fall bottom trawl
survey (red outline) showing catches of rosette skate (kg/tow) from 1985 to 2009. Tows within the
outlined strata for the respective surveys were used for external validation of the calibration model results.
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Map 13. Selected survey strata for the summer scallop dredge survey (shaded) and the spring/fall bottom trawl
survey (red outline) showing catches of thorny skate (kg/tow) from 1985 to 2009. Tows within the
outlined strata for the respective surveys were used for external validation of the calibration model results.
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Map 14. Selected survey strata for the summer scallop dredge survey (shaded) and the fall bottom trawl survey (red
outline) showing catches of winter skate (kg/tow) from 1985 to 2009. Tows within the outlined strata for
the respective surveys were used for external validation of the calibration model results.
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4.4.4 NEAMap spring and fall trawl survey (clearnose, little, and winter skates)

The NEAMap program conducts a coastwide spring and fall inshore trawl survey (Map 15,
http://www.neamap.net/projects.html; 2010 NEAMap Trawl Documentation in Background Documents),
ranging from NC to MA, to augment and compliment the NMFS trawl survey that occurs further
offshore. This survey is sampled from a randomized grid and the PDT chose the offshore band of the
inshore strata from the spring and fall trawl survey (Map 16 to Map 18) to compare the NEAMap indices
of abundance and biomass. Although the FSV Albatross sampled in shallower inshore strata, only the
outer band was chosen because it is consistently sampled by the FSV Bigelow.

This comparison of annual indices is particularly useful for clearnose and little skates, and to a lesser
extent for winter skate. For other skates typically found further offshore (barndoor and rosette) or in the
Gulf of Maine (smooth and thorny), the comparison is not useful. It is important to note that due to its
inshore and shallow water distribution, this is the only external validation possible for clearnose skate.

The NEAMap spring and fall trawl survey stratified mean abundance and biomass for clearnose, little, and
winter skates were compared with similarly computed stratified mean indices from the NMFS
spring and fall trawl surveys, respectively, for the selected strata. The relationships between the
annual indices are shown in Figure 15,
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Figure 16, and
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Figure 17.

e The NEAMap survey began in the fall of 2008, so only has a short time series and is therefore
less useful as a source of external validation.

e This is the only source of external validation of the calibrated clearnose skate indices. The area
based (Model 3) calibrations give the highest values, but all three models appear to give plausible
results.

e Calibrations of little skate catches also appear to give plausible results for all three models. The
baseline (Model 1) calibrations are highest in the spring, but lowest in the fall. This result may be
related to differential availability of clearnose skate to the spring and fall surveys, which is taken
into account by the area based (Model 3) calibrations.

e The calibrations of winter skates in inshore strata used to compare with the NEAMap survey give
plausible values in the spring, but anomalously high values in the fall. The surveys of the inshore
strata in the Southern New England area in 2009 and 2010 were approximately a week later in the
season compared to 2007 and 2008 which may explain some of the difference, but the survey
strata sampled for this comparison are exactly the same.

Map 15. Maps of primary and replacement sampling stations in gridded NEAMap survey during 2010.
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Map 16. Selected survey strata for the spring/fall bottom trawl survey (red outline) showing catches of clearnose
skate (kg/tow) from 2007 to 2010, used to compare with the NEAMap spring and fall trawl survey. Tows

within the outlined strata for the respective surveys were used for external validation of the calibration
model results.
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Map 17. Selected survey strata for the spring/fall bottom trawl survey (red outline) showing catches of little skate
(kg/tow) from 2007 to 2010, used to compare with the NEAMap spring and fall trawl survey. Tows within

the outlined strata for the respective surveys were used for external validation of the calibration model
results.
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Map 18. Selected survey strata for the spring/fall bottom trawl survey (red outline) showing catches of winter skate
(kg/tow) from 2007 to 2010, used to compare with the NEAMap spring and fall trawl survey. Tows within
the outlined strata for the respective surveys were used for external validation of the calibration model

results.
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4.4.5 SMAST camera tripod survey (ANY skate species)

The SMAST survey is conducted coastwide with a grid sampling design. Design based means and CVs
were calculated by MacDonald et al (2010) and compared with the same strata that the PDT chose for
comparison with the scallop dredge survey (Section 4.4.3). Although this selection of spring and fall
trawl survey strata may not be the best choice for the SMAST survey, the PDT felt that it was sufficient
for this analysis. And since the images of observed skates have not identified the ‘catches’ by species nor
are they measured for length, the PDT compared the SMAST data in MacDonald (2010) with the total
mean stratified number per tow for all skates in the trawl survey.

The relationships between the annual indices are shown in Figure 18.

e Skates are not identified by species in the SMAST camera survey, nor are they measured for
length, so only the combined abundance for scallop related trawl survey strata were compared
with the SMAST survey indices.

e  All three model calibrations appear to give plausible values when compared to the SMAST
abundance indices.
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Figure 18. Any skate for SMAST scallop strata — correlation between FSV Albatross spring (left) and fall (right)
surveys and calibrated FSV Bigelow data with the scallop summer dredge survey. Baseline calibration =
Model 1, Length based = Model 2, Area based = Model 3 (season, region). Pearson correlation
coefficients (r) are calculated by weighting observations by the inverse of the sum of their variance on
the means. Therefore the r values will be different than the trend line calculated by Excel.
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5.0 Proposed changes in calculating skate stratified mean
biomass due to FSV Bigelow sampling

Due in part to vessel capabilities, some inshore strata having shallow depth used in determining the
median catch/biomass values are no longer sampled by the FSV Bigelow. In particular, this change in
sampling coverage affects the median catch/biomass values and biological reference points for clearnose
and little skates.

5.1 Effect on time series and biological reference points

The Henry B. Bigelow is no longer able to sample some shallow inshore strata because the draught of the
vessel is too large. The bottom type of one offshore stratum (01330-German Bank off Nova Scotia) is too
rough to tow the new net and is no longer sampled. In order to make the time series comparable back in
time, the survey indices were recalculated using consistent sets for all species except rosette, which was
unaffected by these changes.

The effect on the reference points and the 2008 stratified mean biomass was very minor for four of the six
skate species (Table 10, Table 11, and Table 12). The deletion of the German Bank stratum was barely
perceptible for winter, thorny, smooth and barndoor skate (Figure 19 to Figure 24). The removal of the
inshore strata did affect clearnose and little quite a bit, however (Table 10, Table 11, and Table 12). The
little and clearnose skate time series were overall lower due to the removal of high density inshore areas
(Figure 19 and Figure 20). The trend, however, was similar, although year-to-year variability was
different.

Table 10. Comparison of existing skate biomass targets and those re-calculated using strata sampled by the FSV

Bigelow.
Existing biomass target Recalculated biomass target
(mean kg/tow, FSV Albatross units) | (mean kg/tow, FSV Albatross units)
Barndoor 1.60 1.57
Clearnose 0.77 0.66
Little 7.03 6.15
Smooth 0.29 0.27
Thorny 4.12 4.13
Winter 5.60 5.66

Table 11. Comparison of coefficient of variation (CV) for annual biomass means used to set fishing mortality
thresholds and CVs re-calculated using strata sampled by the FSV Bigelow.

Existing fishing mortality
CVs for FSV Bigelow threshold (% decline in
CVs for FSV Albatross strata strata three year moving average)
Barndoor 29.93 24.46 30
Clearnose 29.53 38.75 30
Little 16.48 19.13 20
Smooth 27.49 27.52 30
Thorny 21.09 21.43 20
Winter 19.44 19.46 20
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Table 12. Comparison of 2008 stratified mean biomass with FSV Albatross strata and FSV Bigelow strata.

Mean biomass (kg/tow) Mean biomass (kg/tow)
FSV Albatross strata FSV Bigelow strata Status change?
Barndoor 1.092 1.111 No
Clearnose 1.725 1.233 No
Little 7.339 6.291 No
Smooth 0.098 0.100 No
Thorny 0.209 0.199 No
Winter 9.500 9.623 No
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Figure 25. Revised biomass time series and reference points, consistent with strata sampled by the FSV Bigelow.
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5.2 Effect on setting ABC

To account for this new inconsistency in the time series, the Skate PDT recalculated the 2010 and 2011
ABCs using the FSV Bigelow strata. Changing the time series raised the clearnose skate catch/biomass
median by 10 percent and raised the little skate catch/biomass median by 19 percent. This increase is
caused by the stratified mean in the FSV Bigelow strata being 16 and 11 percent lower, respectively, than
the stratified mean for the FSV Albatross tows which include inshore strata where clearnose and little
skate catches are usually more (see Table 14 to Table 19). Very little change in the annual mean biomass
(and resulting catch/biomass median values) were observed for barndoor, rosette, smooth, thorny, and
winter skates, consistent with our expectations.

Applying the revised values to the 2006-2008 mean stratified biomass estimates raises the 41,080 mt
ABC to 41,946 mt (Table 13). While the catch/biomass median values for clearnose and little skates are
higher, this effect on the ABC is muted because the stratified mean for 2006-2008 is correspondingly

lower by about the same amount (allowing some variation in geographic distribution).

Table 13. Comparative calculation of catch/biomass values with different strata used to calculate annual mean
biomass by species.

Catch C/B derived catch limits Catch/biomass Survey biomass
Species Median 80% of median Median 75% of median Median 75% of median kgl/tow
Barndoor 400 320 3,295 2,471 3.230 2423 1.020
Skate ABC Clearnose 1,110 888 2,529 1,897 2.440 1.830 1.037,
. . . Little 10,189 8,151 12,047 9,035 2.390 1.793 5.040
spe01ﬁcat10ns using Rosette 47 38 117 88 2.190 1.643 | 0053
FSV Alb . . Smooth 303 242 226 169 1.690 1.268 | 0.133
atross strata Thorny 5,209 4,167 1,319 989 3.140 2.355 0,420/
Winter 16,586 13,269 21,548 16,161 4.120 3.090 5.230
and 2006-2008 Total 33,844 27,075 41,080 30,810
survey data.
ABC (mt) 41,080
ACT (mt) 30,810 Federal TAL  Wing TAL Mortality reduct Bait TAL Season 1 Season 2 Season 3
TAL (mt) 14,780 13,856 9,214 -27.5% 4,642 1,430 1,722 1,490
Catch C/B derived catch limits Catch/biomass Survey biomass index
Species Median 80% of median Median 75% of median Median 75% of median
Barndoor 400 320 3,265 2,449 3.222 2.417 1.013/
Skate ABC Clearnose 1,110 888 2,347 1,760 2,695 2,021 | 0.871
. ‘ . Little 10,189 8,151 13,160 9,870 2.898 2174 4.541
spec1ﬁcat10ns using Rosette 47 38 108 81 2.090 1.567 0.052
. Smooth 303 242 226 169 1.669 1.251 0.135
FSV Blgelow strata Thorny 5,209 4,167 1,307 981 3117 2,337 0.420
Winter 16,586 13,269 21,532 16,149 4.067 3.051 5.294
and 2006-2008 Total 33,846 27,076 41,946 31,459
SUEveY data. ABC (mt) 41,946
ACT (mt) 31,459 Federal TAL  Wing TAL Mortality reduct Bait TAL Season 1 Season 2 Season 3
TAL (mt) 15,092 14,168 9,422 -25.8% 4,746 1,462 1,761 1,624
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6.0 Effects on setting ABC using 2008 FSV Albatross and
calibrated 2009-2010 FSV Bigelow survey data

The existing annual ABC for the 2010 and 2011 fishing years is 41,080 mt, using the FSV Albatross time
series catch/biomass median applied to the 2006-2008 fall and spring (for little skate) survey data (Table
13). The Council adopted a 25% buffer to account for management uncertainty, leaving an annual catch
target of 30,810 mt. Assuming that the past discard rate (52%) and the proportion of skate landings by
state vessels (3%) pertains to the 2010 and 2011 fishing years, the Council approved a 12,848 mt TAL
which is allocated by Amendment 3 to the skate wing and skate bait fishery based on historic landings.

These same buffers, assumptions, and allocations are assumed to apply to this analysis and the Council
may apply it to the 2011 fishing year if a calibration method and 2011 ABC is approved by the SSC.
When data become available, the Skate PDT intends to update the discard and state landings rate with
new data through 2010, re-examine whether the 50% discard mortality rate should be adjusted after
reviewing new research data, and apply post-season accountability measures if they are needed to
recommend an adjusted ABC and TALs for the 2012 and 2013 fishing years in the next specification
package. These specifications would be reviewed and possibly approved by the SSC when it meets in
June 2011 (tentative date) and the specification package or framework adjustment approved by the
Council in September.

Two adjustments are needed to properly use the FSV Bigelow data. The first adjustment is to calculate
the stratified mean biomass from the appropriate strata which are consistently sampled by the FSV
Albatross and FSV Bigelow. This sampling issue is addressed in Section 5.0 and would increase the
ABC by 2.1 percent when the 2006-2008 data are applied. The effect on the ABC may vary when
different survey years (e.g. 2007-2009) are used because the relative distribution of skates among various
strata may change. The second adjustment is to calibrate the FSV Bigelow tows to FSV Albatross tows
and calculate stratified mean biomass.

Three calibration methods are evaluated in this report and a comparison of the effects on the ABC is
given below, one set updating the survey series to 2007-2009 as would have occurred for the 2010 and
2011 fishing year specifications’, the second set updating the survey series to 2008-2010 as will occur for
the 2012-2013 specifications. The results are presented in the tables below and summarized in Table 29.

6.1 Model 1 - Aggregate abundance and biomass catch efficiency by
species

The calculation of ABC for the surveys ending in 2009 and 2010 using the Model 1 calibration to adjust
the FSV Bigelow data are shown in Table 20. The catch/biomass median includes the time series through
2007, is consistent with the FSV Bigelow sampled strata, and does not change with time.

? The 2009 survey was not included in the Amendment 3 specifications for 2010 and 2011 because the
skate calibration methodology had not been fully vetted and in April 2010 was only available for little and
winter skates when the SSC approved the final Amendment 3 ABC.
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The three year survey biomass moving average (Table 21), including the Model 1 calibrated survey for
2009 increased by 24% for little skate and 55% for winter skate, but declined by 39% for thorny skate.
The three year biomass average for other skates changed by smaller amounts. Although for little skate the
2009 biomass index increased from 6.29 kg/tow on the FSV Albatross in 2008 to 6.55 kg/tow (Model 1
calibrated) on the FSV Bigelow in 2009 and for winter skate increased from 9.62 kg/tow in 2008 to 11.33
kg/tow in 2009, most of the increase comes from dropping 2006 from the three year biomass index, 3.33
and 2.52 kg/tow, respectively (Table 21).

As a result, the calculated ABC using the Model 1 calibrations would increase by 39% to 56,900 mt
(Table 20). Similarly the TAL, assuming that the discard rate is 52% of total catch, increases by the same
fraction from 14,780 to 20,472 mt and the wing TAL increases from 9,214 to 13,000 mt.

These survey trends and effects on the ABC were similar when the three year average survey biomass is
updated for 2010 data, calibrated with Model 1 methods, increasing by another 39% for little skate and by
18% for winter skate (Table 21). The three year average declined less for thorny skate (by 5%). Smooth
skate biomass increased by 21% but at low overfished values (so the denominator is small) and the
relatively noisy rosette skate three year average declined by 25%.

Updating for 2010 data (and dropping 2007 from the three year moving average) would increase the ABC
t0 69,353 mt (+69%), increasing the total TAL by the same fraction to 24,953 mt while the wing TAL
would increase to 15,979 mt (Table 20). Again, much of the ABC increase is attributable to the
relatively higher little and winter skate biomass indices, but also due to dropping the low 2007 values
(4.01 and 3.74 kg/tow, respectively) from the average.
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Table 20. Comparative calculation of ABC and other skate specifications (mt) using stratified mean biomass
indices from FSV Bigelow survey strata, calibrated to FSV Albatross units via Model 1 methods. The
survey biomass index is a three year average, kg/tow, while the catch/biomass median is in mt/kg,
including landings and discards through 2007.
Catch C/B derived catch limits Catch/biomass Survey biomas|
Species Median 80% of medi Median 75% of medi Median 75% of median
Barndoor 400 320 3,220 2,415 3.222 2.417 0.999
Clearnose 1,110 888 2,718 2,039 2.695 2.021 1.009
Little 10,189 8,151 16,342 12,256 2.898 2174 5.639
Survey | Rosette 47 38 112 84 2.090 1.567 0.053
S Smooth 303 242 221 166 1.669 1.251 0.133
2007 - | Thorny 5,209 4,167 803 603 3117 2.337 | 0.258
2009 Winter 16,586 13,269 33,483 25,112 4.067 3.051 8.232
Total 33,846 27,076 56,900 42,675
ABC (mt) 56,900
ACT (mt) 42,675 Federal TALWing TAL Mortality red Bait TAL Season 1 Season 2 Sed
TAL (mt) 20,472 19,548 13,000 2.3% 6,549 2,017 2,430
Catch C/B derived catch limits Catch/biomass Survey biomas
Species Median 80% of medi Median 75% of medi Median 75% of median
Barndoor 400 320 3,591 2,693 3.222 2.417 1.114
Clearnose 1,110 888 2,515 1,887 2.695 2.021 0.933
Little 10,189 8,151 22,744 17,058 2.898 2.174 7.848
Survey | Rosette 47 38 84 63 2.090 1.567 0.040
S Smooth 303 242 268 201 1.669 1.251 0.161
2008 - | Thorny 5,209 4,167 763 572 3117 2337 0.245
2010 Winter 16,586 13,269 39,389 29,542 4.067 3.051 9.684
Total 33,846 27,076 69,353 52,015
ABC (mt) 69,353
ACT (mt) 52,015 Federal TAL Wing TAL Mortality red Bait TAL Season 1 Season2 Se{
TAL (mt) 24,953 24,029 15,979 25.8% 8,050 2,479 2,986
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Table 21. Annual fall and spring (for little skate) stratified mean biomass using consistent FSV Bigelow strata with
2009 and 2010 values calibrated to FSV Albatross equivalents using Model 1, and three year moving

averages.

Year
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

2005-2007

2006-2008

2007-2009

2008-2010

Barndoor Clearnose Little Rosette = Smooth  Thorny Winter
1.16 0.24
1.88 0.49
0.82 0.36
0.34 0.02 0.18 2.23
0.29 0.00 0.40 4.51 1.86
0.06 0.00 0.27 5.75 1.44
0.01 0.01 0.24 7.43 3.00
0.10 0.00 0.16 5.33 1.10
0.10 0.02 0.34 4.13 2.98
0.00 0.01 0.31 4.63 4.75
- 0.02 0.13 3.00 212
0.02 0.15 0.01 0.08 2.45 1.33
0.05 0.10 0.02 0.04 1.75 2.65
- 0.66 1.20 0.02 0.38 3.16 4.15
- 0.10 1.24 0.01 0.46 419 5.06
0.01 0.33 0.58 0.01 0.19 3.66 5.19
- 0.63 1.97 0.09 0.35 4.58 6.30
- 0.12 1.34 0.08 0.12 3.28 5.73
- 0.14 3.39 0.01 0.04 0.66 8.42
- 0.13 5.01 0.00 0.15 242 13.03
0.01 0.16 3.59 0.03 0.20 2.85 13.47
0.00 0.19 6.08 0.01 0.21 2.89 9.31
0.03 0.53 2.56 0.00 0.21 1.60 16.01
0.01 0.27 3.99 0.03 0.10 0.95 11.20
0.01 0.07 4.97 0.02 0.29 1.49 7.67
0.00 0.25 6.38 0.02 0.13 1.81 5.14
0.03 0.36 4.92 0.02 0.20 1.72 7.23
0.03 0.77 4.79 0.01 0.17 1.64 4.79
0.00 0.28 5.01 0.03 0.13 0.93 3.63
0.09 0.18 7.16 0.02 0.23 1.69 1.93
0.04 0.53 3.28 0.07 0.10 1.53 215
0.11 0.26 2.66 0.04 0.19 0.78 2.01
0.04 0.40 6.63 0.04 0.18 0.80 2.31
0.11 0.60 2.40 0.01 0.24 0.84 2.49
0.09 1.14 5.09 0.05 0.03 0.66 3.80
0.31 1.05 8.90 0.07 0.07 0.46 5.13
0.27 1.10 6.15 0.03 0.16 0.83 4.44
0.55 0.98 6.73 0.12 0.29 0.32 3.89
0.72 0.93 5.97 0.05 0.11 0.41 5.66
0.56 0.60 6.15 0.03 0.19 0.75 3.43
1.33 0.80 5.95 0.05 0.22 0.72 4.08
1.05 0.49 3.13 0.06 0.13 0.20 2.65
117 0.48 3.33 0.06 0.21 0.74 2152
0.76 0.90 4.01 0.07 0.09 0.32 3.74
1.11 1.23 6.29 0.03 0.10 0.20 9.62
1.13 0.89 6.62 0.06 0.21 0.25 11.33
1.10 0.68 10.63 0.03 0.18 0.28 8.09
0.994 0.622 3.489 0.064 0.147 0.421 2.969
1.013 0.871 4.541 0.052 0.135 0.420 5.294
0.999 1.009 5.639 0.053 0.133 0.258 8.232
1.114 0.933 7.848 0.040 0.161 0.245 9.684
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6.2 Model 2 - Aggregate species size based catch efficiency

The general biomass trends using Model 2 calibrations are similar to Model 1, but the increase in the
three year average biomass indices are less than Model 1, particularly for little and winter skate which
have the greatest effect on the ABC calculation (because they comprise the greatest proportion of
commercial catch which is used to weight the biomass indices).

The calculation of ABC for the surveys ending in 2009 and 2010 using the Model 2 calibration to adjust
the FSV Bigelow data are shown in Table 22. The catch/biomass median includes the time series through
2007, is consistent with the FSV Bigelow sampled strata, and does not change with time.

The three year survey biomass moving average (Table 23), including the Model 2 calibrated survey for
2009 increased by 1% for little skate and 40% for winter skate, but declined by 35% for thorny skate.
The three year biomass average for other skates changed by smaller amounts, except the noisy rosette
skate biomass index (which does not influence the ABC much) increased by 26%. Although for little
skate the 2009 biomass index decreased from 6.29 kg/tow on the FSV Albatross in 2008 to 3.42 kg/tow
(Model 2 calibrated) on the FSV Bigelow in 2009 and for winter skate decreased from 9.62 kg/tow in
2008 to 8.92 kg/tow in 2009, therefore all of the increase in the three year biomass averages comes from
dropping the 2006 biomass index, 3.33 and 2.52 kg/tow, respectively (Table 23).

As a result, the calculated ABC using the Model 2 calibrations would increase by 26% to 51,748 mt
(Table 22). Similarly the TAL, assuming that the discard rate is 52% of total catch, increases by the same
fraction from 14,780 to 18,618 mt and the wing TAL increases from 9,214 to 11,767 mt.

These survey trends and effects on the ABC were similar when the three year average survey biomass is
updated for 2010 data, calibrated with Model 2 methods, increasing by another 10% for little skate and by
12% for winter skate (Table 23). The three year average increased for thorny skate (by 2%). Smooth
skate biomass increased by 20% but at low overfished values (so the denominator is small) and the
relatively noisy rosette skate three year average declined by 14% (after a 26% increase in 2009).

Updating for 2010 data (and dropping 2007 from the three year moving average) would increase the ABC
to 57,974 mt (+41%), increasing the total TAL by the same fraction to 20,858 mt while the wing TAL
would increase to 13,256 mt (Table 22). Again, much of the ABC increase is attributable to the
relatively higher little and winter skate biomass indices, but also due to dropping the low 2007 values
(4.01 and 3.74 kg/tow, respectively) from the average.
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Table 22.

Comparative calculation of ABC and other skate specifications (mt) using stratified mean biomass
indices from FSV Bigelow survey strata, calibrated to FSV Albatross units via Model 2 methods. The
survey biomass index is a three year average, kg/tow, while the catch/biomass median is in mt/kg,

including landings and discards through 2007.

Catch C/B derived catch limits Catch/biomass Survey biomass index
Species Median 80% of medi Median 75% of medi Median 75% of median
Barndoor 400 320 3.6 2,826 3.222 2417 1.169
Clearnose 1,110 888 3,322 2,491 2.695 2.021 | 1.233|
Little 10,189 8,151 13,246 9,935 2.898 2174 | 4.571
Surveys Rosette 47 38 136 102 2.090 1.567 | 0.065
Smooth 303 242 212 159 1.669 1.251 0.127
2007 - | Thomny 5,209 4,167 851 638 3117 2337 0.273
2009 Winter 16,586 13,269 30,214 22660  4.067  3.051 |  7.428
Total 33,846 27,076 51,748 38,811
ABC (mt) 51,748
ACT (mt) 38,811 Federal TALWing TAL  Mortality red Bait TAL Season1 Season2 Season 3
TAL (mt) 18,618 17,694 11,767 -7.4% 5,928 1,826 2,199 1,903
Catch C/B derived catch limits Catch/biomass Survey biomass index
Species Median 80% of medi Median 75% of medi Median 75% of median
Barndoor 400 320 4,655 3,491 3.222 2417 1.445
Clearnose 1,110 888 3,558 2,669 2.695 2.021 1.320
Little 10,189 8,151 14,569 10,927 2.898 2174 | 5.027
S Rosette 47 38 117 88 2.090 1.567 | 0.056|
urveys
Smooth 303 242 253 190 1.669 1.251 0.151
2008 - | oy 5,200 4,167 867 650 3117 2337 0278
2010 Winter 16,586 13,269 33,955 25466 4.067  3.051 8348
Total 33,846 27,076 57,974 43,480
ABC (mt) 57,974
ACT (mt) 43,480 Federal TALWing TAL Mortality red Bait TAL Season 1 Season 2 Season 3
TAL (mt) 20,858 19,934 13,256 4.3% 6,678 2,057 2,478 2,144
Skate calibration analysis -82 - March 2010

Skate PDT




Table 23. Annual fall and spring (for little skate) stratified mean biomass using consistent FSV Bigelow strata with
2009 and 2010 values calibrated to FSV Albatross equivalents using Model 2, and three year moving

averages.

Year
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

2005-2007

2006-2008

2007-2009

2008-2010

Barndoor Clearnose Little Rosette = Smooth  Thorny Winter
1.16 0.24
1.88 0.49
0.82 0.36
0.34 0.02 0.18 2.23
0.29 0.00 0.40 4.51 1.86
0.06 0.00 0.27 5.75 1.44
0.01 0.01 0.24 7.43 3.00
0.10 0.00 0.16 5.33 1.10
0.10 0.02 0.34 413 2.98
0.00 0.01 031 4.63 4.75
- 0.02 0.13 3.00 2.12
0.02 0.15 0.01 0.08 2.45 1.33
0.05 0.10 0.02 0.04 1.75 2.65
- 0.66 1.20 0.02 0.38 3.16 415
- 0.10 1.24 0.01 0.46 4.19 5.06
0.01 0.33 0.58 0.01 0.19 3.66 5.19
- 0.63 1.97 0.09 0.35 4.58 6.30
- 0.12 1.34 0.08 0.12 3.28 5.73
- 0.14 3.39 0.01 0.04 0.66 8.42
- 0.13 5.01 0.00 0.15 2.42 13.03
0.01 0.16 3.59 0.03 0.20 2.85 13.47
0.00 0.19 6.08 0.01 0.21 2.89 9.31
0.03 0.53 2.56 0.00 0.21 1.60 16.01
0.01 0.27 3.99 0.03 0.10 0.95 11.20
0.01 0.07 497 0.02 0.29 1.49 7.67
0.00 0.25 6.38 0.02 0.13 1.81 5.14
0.03 0.36 4.92 0.02 0.20 1.72 7.23
0.03 0.77 4.79 0.01 0.17 1.64 4.79
0.00 0.28 5.01 0.03 0.13 0.93 3.63
0.09 0.18 7.16 0.02 0.23 1.69 1.93
0.04 0.53 3.28 0.07 0.10 1.53 2.15
QA 0.26 2.66 0.04 0.19 0.78 2.01
0.04 0.40 6.63 0.04 0.18 0.80 2.31
0.11 0.60 2.40 0.01 0.24 0.84 2.49
0.09 1.14 5.09 0.05 0.03 0.66 3.80
0.31 1.05 8.90 0.07 0.07 0.46 5.13
0.27 1.10 6.15 0.03 0.16 0.83 4.44
0.55 0.98 6.73 0.12 0.29 0.32 3.89
0.72 0.93 5.97 0.05 0.11 0.41 5.66
0.56 0.60 6.15 0.03 0.19 0.75 3.43
1.33 0.80 5.95 0.05 0.22 0.72 4.08
1.05 0.49 3.13 0.06 0.13 0.20 2.65
1.17 0.48 3.33 0.06 0.21 0.74 2.52
0.76 0.90 4.01 0.07 0.09 0.32 3.74
10 1.23 6.29 0.03 0.10 0.20 9.62
1.64 1.56 3.42 0.10 0.19 0.30 8.92
1.59 1.17 5.38 0.04 0.17 0.34 6.50
0.994 0.622 3.489 0.064 0.147 0.421 2.969
1.013 0.871 4.541 0.052 0.135 0.420 5.294
1.169 1.233 4.571 0.065 0.127 0.273 7.428
1.445 1.320 5.027 0.056 0.151 0.278 8.348
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6.3 Model 3S - Aggregate catch efficiency by length and season

The general biomass trends using Model 3S calibrations are similar to Model 2, but the increase in the
three year average biomass indices are less than Model 1 and greater than Model 2, particularly
influenced by the little and winter skate calibrated indices which have the greatest effect on the ABC
calculation (because they comprise the greatest proportion of commercial catch which is used to weight
the biomass indices).

The calculation of ABC for the surveys ending in 2009 and 2010 using the Model 3S calibration to adjust
the FSV Bigelow data are shown in Table 24. The catch/biomass median includes the time series through
2007, is consistent with the FSV Bigelow sampled strata, and does not change with time.

The three year survey biomass moving average (Table 25), including the Model 3S calibrated survey for
2009 increased by 7% for little skate and 45% for winter skate, but declined by 35% for thorny skate.
The three year biomass average for other skates changed by smaller amounts, except the noisy rosette
skate biomass index (which does not influence the ABC much) decreased by 7%. Although for little
skate, the 2009 biomass index decreased from 6.29 kg/tow on the FSV Albatross in 2008 to 4.33 kg/tow
(Model 3S calibrated) on the FSV Bigelow in 2009 and for winter skate increased from 9.62 kg/tow in
2008 to 9.71 kg/tow in 2009, therefore most of the increase in the three year biomass averages comes
from dropping the 2006 biomass index, 3.33 and 2.52 kg/tow, respectively (Table 25).

As a result, the calculated ABC using the Model 3S calibrations would increase by 31% to 53,611 mt
(Table 24). Similarly the TAL, assuming that the discard rate is 52% of total catch, increases by the same
fraction from 14,780 to 19,289 mt and the wing TAL increases from 9,214 to 12,213 mt.

These survey trends and effects on the ABC were similar when the three year average survey biomass is
updated for 2010 data, calibrated with Model 3S methods, increasing by another 19% for little skate and
by 14% for winter skate (Table 25). The three year average increased slightly for thorny skate (by 1%).
Smooth skate biomass increased by 18% but at low overfished values (so the denominator is small) and
the relatively noisy rosette skate three year average declined by 33% (after a 7% decrease in 2009).

Updating for 2010 data (and dropping 2007 from the three year moving average) would increase the ABC
to 61,871 mt (+51%), increasing the total TAL by the same fraction to 22,261 mt while the wing TAL
would increase to 14,189 mt (Table 24). Again, much of the ABC increase is attributable to the
relatively higher little and winter skate biomass indices, but also due to dropping the low 2007 values
(4.01 and 3.74 kg/tow, respectively) from the average.
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Table 24. Comparative calculation of ABC and other skate specifications (mt) using stratified mean biomass
indices from FSV Bigelow survey strata, calibrated to FSV Albatross units via Model 3S methods. The
survey biomass index is a three year average, kg/tow, while the catch/biomass median is in mt/kg,

including landings and discards through 2007.

Catch C/B derived catch limits Catch/biomass Survey biomass index
Species Median 80% of medi Median 75% of medi Median 75% of median
Barndoor 400 320 3,641 2,731 3.222 2417 1.130
Clearnose 1,110 888 3,396 2,547 2.695 2.021 1.260
Little 10,189 8,151 14,131 10,598 2.898 2174 4.876
Survey Rosette 47 38 101 75 2.090 1.567 0.048
S Smooth 303 242 209 157 1.669 15251 0.125
2007 - Thorny 5,209 4,167 856 642 3.117 2.337 0.275
2009 Winter 16,586 13,269 31,277 23,458 4.067 3.051 7.690
Total 33,846 27,076 53,611 40,208
ABC (mt) 53,611
ACT (mt) 40,208 Federal TALWing TAL Mortality red Bait TAL Season 1 Season 2 Season 3
TAL (mt) 19,289 18,365 12,213 -3.9% 6,152 1,895 2,282 1,975
Catch C/B derived catch limits Catch/biomass Survey biomass index
Species Median 80% of medi Median 75% of medi Median 75% of median
Barndoor 400 320 4,409 3,307 3.222 2417 1.368
Clearnose 1,110 888 3,682 2,762 2.695 2.021 | 1.366
Little 10,189 8,151 16,871 12,653 2.898 2174 5.821
Survey Rosette 47 38 67 50 2.090 1.567 0.032
S Smooth 303 242 248 186 1.669 42511 0.148
2008 - Thorny 5,209 4,167 869 652 3.117 2.337 0.279
2010 Winter 16,586 13,269 35,724 26,793 4.067 3.051 8.783
Total 33,846 27,076 61,871 46,403
ABC (mt) 61,871
ACT (mt) 46,403 Federal TALWing TAL Mortality red Bait TAL Season 1 Season 2 Season 3
TAL (mt) 22,261 21,337 14,189 11.7% 7,148 2,202 2,652 2,294
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Table 25. Annual fall and spring (for little skate) stratified mean biomass using consistent FSV Bigelow strata with
2009 and 2010 values calibrated to FSV Albatross equivalents using Model 3S, and three year moving

averages.

Year
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

2005-2007

2006-2008

2007-2009

2008-2010

Barndoor Clearnose Little Rosette =~ Smooth  Thorny Winter
1.16 0.24
1.88 0.49
0.82 0.36
0.34 0.02 0.18 2.23
0.29 0.00 0.40 4.51 1.86
0.06 0.00 0.27 575 1.44
0.01 0.01 0.24 7.43 3.00
0.10 0.00 0.16 5.33 1.10
0.10 0.02 0.34 4.13 2.98
0.00 0.01 0.31 4.63 4.75
- 0.02 0.13 3.00 212
0.02 0.15 0.01 0.08 2.45 1.33
0.05 0.10 0.02 0.04 1.75 2.65
- 0.66 1.20 0.02 0.38 3.16 4.15
- 0.10 1.24 0.01 0.46 4.19 5.06
0.01 0.33 0.58 0.01 0.19 3.66 5.19
- 0.63 1.97 0.09 0.35 4.58 6.30
- 0.12 1.34 0.08 0.12 3.28 5573
- 0.14 3.39 0.01 0.04 0.66 8.42
- 0.13 5.01 0.00 0.15 242 13.03
0.01 0.16 359 0.03 0.20 2.85 13.47
0.00 0.19 6.08 0.01 0.21 2.89 9.31
0.03 0.53 2.56 0.00 0.21 1.60 16.01
0.01 0.27 3.99 0.03 0.10 0.95 11.20
0.01 0.07 4.97 0.02 0.29 1.49 7.67
0.00 0.25 6.38 0.02 0.13 1.81 5.14
0.03 0.36 4.92 0.02 0.20 1.72 7.23
0.03 0.77 4.79 0.01 0.17 1.64 4.79
0.00 0.28 5.01 0.03 0.13 0.93 3.63
0.09 0.18 7.16 0.02 0.23 1.69 1.93
0.04 0.53 3.28 0.07 0.10 1.53 2.15
0.11 0.26 2.66 0.04 0.19 0.78 2.01
0.04 0.40 6.63 0.04 0.18 0.80 2.31
0.11 0.60 2.40 0.01 0.24 0.84 2.49
0.09 1.14 5.09 0.05 0.03 0.66 3.80
0.31 1.05 8.90 0.07 0.07 0.46 5.13
0.27 1.10 6.15 0.03 0.16 0.83 4.44
0.55 0.98 6173 0.12 0.29 0.32 3.89
0.72 0.93 5.97 0.05 0.11 0.41 5.66
0.56 0.60 6.15 0.03 0.19 0.75 3.43
1.33 0.80 5.95 0.05 0.22 0.72 4.08
1.05 0.49 3.13 0.06 0.13 0.20 2.65
1.17 0.48 3.33 0.06 0.21 0.74 2.52
0.76 0.90 4.01 0.07 0.09 0.32 3.74
1.11 1.23 6.29 0.03 0.10 0.20 9.62
1.52 1.64 4.33 0.05 0.18 0.30 9.71
1.47 1.22 6.84 0.02 0.16 0.33 7.02
0.994 0.622 3.489 0.064 0.147 0.421 2.969
1.013 0.871 4.541 0.052 0.135 0.420 5.294
1.130 1.260 4.876 0.048 0.125 0.275 7.690
1.368 1.366 5.821 0.032 0.148 0.279 8.783
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6.4 Model 3SR - Aggregate catch efficiency by length, season, and
region

The general biomass trends using Model 3SR calibrations are similar to Model 2, but the increase in the
three year average biomass indices are less than Model 1 and greater than Model 2 and Model 38,
particularly influenced by the little and winter skate calibrated indices which have the greatest effect on
the ABC calculation (because they comprise the greatest proportion of commercial catch which is used to
weight the biomass indices).

The calculation of ABC for the surveys ending in 2009 and 2010 using the Model 3SR calibration to
adjust the FSV Bigelow data are shown in Table 26. The catch/biomass median includes the time series
through 2007, is consistent with the FSV Bigelow sampled strata, and does not change with time.

The three year survey biomass moving average (Table 27), including the Model 3SR calibrated survey for
2009 increased by 8% for little skate and 50% for winter skate, but declined by 30% for thorny skate.

The three year biomass average for other skates changed by smaller amounts, except the noisy rosette
skate biomass index (which does not influence the ABC much) decreased by 4%. Although for little
skate, the 2009 biomass index decreased from 6.29 kg/tow on the FSV Albatross in 2008 to 4.37 kg/tow
(Model 3SR calibrated) on the FSV Bigelow in 2009 and for winter skate increased from 9.62 kg/tow in
2008 to 10.45 kg/tow in 2009, therefore most of the increase in the three year biomass averages comes
from dropping the 2006 biomass index, 3.33 and 2.52 kg/tow, respectively (Table 27).

As a result, the calculated ABC using the Model 3SR calibrations would increase by 33% to 54,784 mt
(Table 26). Similarly the TAL, assuming that the discard rate is 52% of total catch, increases by the same
fraction from 14,780 to 19,711 mt and the wing TAL increases from 9,214 to 12,493 mt.

These survey trends and effects on the ABC were similar when the three year average survey biomass is
updated for 2010 data, calibrated with Model 3SR methods, increasing by another 20% for little skate and
by 15% for winter skate (Table 27). The three year average for thorny skate increased by 7%. Smooth
skate biomass increased by 23% but at low overfished values (so the denominator is small) and the
relatively noisy rosette skate three year average declined by 31% (after a 4% decrease in 2009).

Updating for 2010 data (and dropping 2007 from the three year moving average) would increase the ABC
to 63,478 mt (+55%), increasing the total TAL by the same fraction to 22,839 mt while the wing TAL
would increase to 14,573 mt (Table 26). Again, much of the ABC increase is attributable to the
relatively higher little and winter skate biomass indices, but also due to dropping the low 2007 values
(4.01 and 3.74 kg/tow, respectively) from the average.
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Table 26.

Comparative calculation of ABC and other skate specifications (mt) using stratified mean biomass
indices from FSV Bigelow survey strata, calibrated to FSV Albatross units via Model 3SR methods. The
survey biomass index is a three year average, kg/tow, while the catch/biomass median is in mt/kg,

including landings and discards through 2007.

Catch C/B derived catch limits Catch/biomass Survey biomass index
Species Median 80% of medi Median 75% of medi Median 75% of median
Barndoor 400 320 3,878 2,908 3.222 2417 1.203
Clearnose 1,110 888 3,193 2,395 2.695 2.021 | 1.185
Little 10,189 8,151 14,172 10,629 2.898 2174 4.890
Survey Rosette 47 38 104 78 2.090 1.567 0.050
S Smooth 303 242 229 172 1.669 1.251 0.137
2007 - Thorny 5,209 4,167 918 689 3.117 2.337 0.295
2009 Winter 16,586 13,269 32,291 24,218 4.067 3.051 | 7.939
Total 33,846 27,076 54,784 41,088
ABC (mt) 54,784
ACT (mt) 41,088 Federal TAL Wing TAL Mortality red Bait TAL Season 1 Season 2 Season 3
TAL (mt) 19,711 18,787 12,493 -1.7% 6,294 1,938 2,335 2,020
Catch C/B derived catch limits Catch/biomass Survey biomass index
Species Median 80% of medi Median 75% of mediMedian  75% of median
Barndoor 400 320 4,881 3,661 3.222 2417 515
Clearnose 1,110 888 3,329 2,496 2.695 2.021 47235
Little 10,189 8,151 16,928 12,696 2.898 2174 5.841
Survey Rosette 47 38 71 54 2.090 1.567 | 0.034,
S Smooth 303 242 283 212 1.669 1.251 0.170
2008 - Thorny 5,209 4,167 987 740 3.117 2.337 0.317
2010 Winter 16,586 13,269 36,999 27,750 4.067 3.051 9.096
Total 33,846 27,076 63,478 47,609
ABC (mt) 63,478
ACT (mt) 47,609 Federal TALWing TAL Mortality red Bait TAL Season 1 Season 2 Season 3
TAL (mt) 22,839 21,915 14,573 14.7% 7,341 2,261 2,724 2,357
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Table 27. Annual fall and spring (for little skate) stratified mean biomass using consistent FSV Bigelow strata with
2009 and 2010 values calibrated to FSV Albatross equivalents using Model 3SR, and three year moving

averages.

Year
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

2005-2007

2006-2008

2007-2009

2008-2010

Barndoor Clearnose Little Rosette Smooth  Thorny Winter
1.16 0.24
1.88 0.49
0.82 0.36
0.34 0.02 0.18 2.23
0.29 0.00 0.40 4.51 1.86
0.06 0.00 0.27 5.5 1.44
0.01 0.01 0.24 7.43 3.00
0.10 0.00 0.16 5.33 1.10
0.10 0.02 0.34 413 2.98
0.00 0.01 0.31 4.63 4.75
- 0.02 0.13 3.00 212
0.02 0.15 0.01 0.08 2.45 1233
0.05 0.10 0.02 0.04 1.75 2.65
- 0.66 1.20 0.02 0.38 3.16 415
- 0.10 1.24 0.01 0.46 4.19 5.06
0.01 0.33 0.58 0.01 0.19 3.66 5.19
- 0.63 1.97 0.09 0.35 4,58 6.30
- 0.12 1.34 0.08 0.12 3.28 5173
- 0.14 3.39 0.01 0.04 0.66 8.42
- 0.13 5.01 0.00 0.15 2.42 13.03
0.01 0.16 3.59 0.03 0.20 2.85 13.47
0.00 0.19 6.08 0.01 0.21 2.89 9.31
0.03 0.53 2.56 0.00 0.21 1.60 16.01
0.01 0.27 3.99 0.03 0.10 0.95 11.20
0.01 0.07 4.97 0.02 0.29 1.49 7.67
0.00 0.25 6.38 0.02 0.13 1.81 5.14
0.03 0.36 4.92 0.02 0.20 1.72 7.23
0.03 0.77 4.79 0.01 0.17 1.64 4.79
0.00 0.28 5.01 0.03 0.13 0.93 3.63
0.09 0.18 7.16 0.02 0.23 1.69 1.93
0.04 0.53 3.28 0.07 0.10 1.53 2.15
0.11 0.26 2.66 0.04 0.19 0.78 2.01
0.04 0.40 6.63 0.04 0.18 0.80 2.31
0.11 0.60 2.40 0.01 0.24 0.84 2.49
0.09 1.14 5.09 0.05 0.03 0.66 3.80
0.31 1.05 8.90 0.07 0.07 0.46 5.13
0.27 1.10 6.15 0.03 0.16 0.83 4.44
0.55 0.98 6.73 0.12 0.29 0.32 3.89
0.72 0.93 5.97 0.05 0.11 0.41 5.66
0.56 0.60 6.15 0.03 0.19 0.75 3.43
1233 0.80 5.95 0.05 0.22 0.72 4.08
1.05 0.49 3.13 0.06 0513 0.20 2.65
117 0.48 3.33 0.06 0.21 0.74 2.52
0.76 0.90 4.01 0.07 0.09 0.32 3.74
1,11 1.28 6.29 0.03 0.10 0.20 9.62
1.74 1.42 4.37 0.05 0.22 0.36 10.45
1.69 1.05 6.86 0.02 0.19 0.39 7.21
0.994 0.622 3.489 0.064 0.147 0.421 2.969
1.013 0.871 4.541 0.052 0.135 0.420 5.294
1.203 1.185 4.890 0.050 0.137 0.295 7.939
1.515 1.235 5.841 0.034 0.170 0.317 9.096
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6.5 Summary

Most of the increase from the Amendment 3 ABC of 41,080 mt using 2006-2008 FSV Albatross weight
per tow data would occur because of generally increasing biomass in 2009 and 2010 (especially compared
with 2006-2007), particularly for little and winter skates regardless of the applied calibration model.
Without accounting for the effect that using FSV Bigelow strata would have and using Model 1 to
calibrate 2009 and 2010 data, the ABC would increase to 68,380 mt (+66%, Table 30 column 3). If the
effect of using consistent FSV Bigelow strata is taken into account and the catch/biomass medians are
recalculated on that basis, the aggregate ABC would increase to 72,651 mt (Table 30 column 5), mostly
from the increase in the catch/biomass median for little skate. This result is only illustrative of the effect
that the FSV Bigelow consistent strata would have on the ABC, calculated using the same mean biomass
data as that applied to the FSV Albatross strata results.

Using the consistent FSV Bigelow strata and applying the Model 1 calibration to 2009 and 2010 FSV
Bigelow data would increase the ABC to 69,353 mt (+69%, Table 30 column 6), most of the difference
coming from little skate which was less abundant during 2007 in the more offshore FSV Bigelow strata.
Model 2 (Table 30 column 7) gives the most conservative (i.e. lowest) ABC results, the biggest
reductions compared to Model 1 in little and winter skates. Although the calibrated three year average is
higher for some skates (i.e. barndoor, clearnose, rosette, smooth, and thorny), the largest reduction
compared to Model 1 calibration is for little and winter skates which when taken together the effect is to
reduce the total ABC to 57,556 mt (still a 40% increase over current specifications). Model 3S and
Model 3SR produce intermediate ABCs of 61,452 mt (+50%) and 62,985 mt (+53%), primarily because
the calibration coefficient for winter skate is lower than it is for Model 2 (Table 28).

The general trend in the potential ABC specifications using calibrated data is the same, driven primarily
by the increase in the mean weight per tow for little and winter skates (and by omitting 2006 and 2007
surveys when mean weight per tow was relatively low). There are however differences between the three
model types (four results depending on whether Model 3 is stratified by season only or season and
region). Models 2, 3S and 3SR are more conservative than Model 1, presumably because the calibration
coefficients by length are higher for smaller size skates than they are in the aggregate for Model 1.

These differences caused by changes in length frequency (Models 2, 3S, and 3SR), availability to the
survey (Models 3S and 3SR), and geographical distribution (Model 3R) will cause the ABC to vary by
year. For example, the ABC increase caused by updating the three year average from 2007-2009 to 2008
to 2010 (Table 29) is 21.9% for Model 1, 12.0% for Model 2, 15.4% for Model 3S, and 16.4% for Model
3SR.

Table 28. Three year (2008-2010) catch per tow for three models to calibrate 2009-2010 FSV Bigelow data into
FSV Albatross equivalents, using consistent FSV Bigelow strata.

Species Model 1 Model 2 Model 3S Model 3SR
Barndoor 1.114 1.445 1.368 1.515
Clearnose 0.933 1.320 1.366 1.235

Little 7.848 5.027 5.821 5.841
Rosette 0.040 0.056 0.032 0.034
Smooth 0.161 0.151 0.148 0.170
Thorny 0.245 0.278 0.145 0.158
Winter 9.684 8.348 8.783 9.096
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Table 29. Summary of ABC specifications by calibration model and three year average biomass, percent increase

from current specifications is parenthesized.

Model 2007-2009 survey 2008-2010 survey
Model 1 0 5
(b specied) 56,900 (+39%) 69,353 (+68%)
Model 2 " 0
(aggregate species by length) ol e (12070) SO (F1%)
Model 3S 0 5
(fitted to length by season) 3,611 (13126) 61871 1r31%)
Model 3SR

(fitted to length by season and 54,784 (+33%) 63,748 (+55%)
region)
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7.0 Effects on setting ABC using calibrated 2008 FSV
Albatross and uncalibrated 2009-2010 FSV Bigelow survey
data

The effects on skate ABCs from converting the FSV Albatross to FSV Bigelow units is theoretically the
same as that described in Section 6.0. But the conversion process itself introduces error arising from
uncertainty in the calibration coefficients, particularly if the conversion is applied to individual lengths or
tows (see working document titled, “Conversion of Skate Abundance Indices from Albatross to Bigelow
Units”) as required for calibration Models 2 and 3. Applying the calibration coefficients to a longer FSV
Albatross time series would infuse more error into the time series and the biological reference points, but
the effects on the catch/biomass median and other reference points needs further research. In addition,
because the FSV Bigelow catches several times the amount of skates that were observed in the
comparable FSV Albatross tows, there are times and places where the FSV Bigelow would catch skates
where the FSV Albatross did not, creating special challenges for converting zero values (whether by tow,
or in the case of barndoor skate for the annual mean biomass) to an FSV Bigelow equivalent. This special
problem has not yet been adequately analyzed or vetted.

Finally, there is a matter of workload. At the present time, there are several choices about which
calibration model and analytical method to use. Until that decision is made, it would take substantial
work to adjust the longer FSV Albatross time series for all choices. If the SSC approves one method and
decides on how to treat the additional error and zero values, then the Skate PDT can covert the FSV
Albatross time series into FSV Bigelow units, estimate new biological reference points in FSV Bigelow
units, and set the ABC based on unconverted FSV Bigelow mean biomass.

8.0 Conclusions

Based on the above thorough analysis, the Skate PDT drew the following conclusions about the four
calibration approaches presented in this report. In general, there are some tradeoffs to be considered in
choosing which model is the best to use. Model 1 accounts for differences in behavior by skate species,
but may not account for differences in length-based processes and requires an assumption for rosette
skate, due to insufficient observations during the calibration surveys. Model 2 accounts for length based
processes, but these may be reflective of differences in the proportions of skates at each length. Models
3R and especially 3SR may capture the length based processes while the regional difference helps to
separate the influence of differential size frequencies (particularly little skate in the northern region).

e Consistent FSV Bigelow strata should be used with recalculated catch/biomass medians to set
ABC. Adjustments to biological reference points are needed to properly compare the FSV
Bigelow calibrated results with mortality thresholds and biomass thresholds and targets to
determine status.

e Conversion of FSV Albatross catch per tow data into FSV Bigelow equivalents introduces error
into the 45 year time series and introduces additional complications. Until these issues can be
resolved, the PDT recommends converting FSV Bigelow data into FSV Albatross equivalents for
the purposes of setting ABC and making status determinations.
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e  All three Model types follow the same principals and apply the same assumed error distribution
as reviewed in the 2009 SAW review. The Model 2 approach has been applied for several other
species due to differences in relative catch efficiency at size, particularly for flatfish which are
less prone to capture by the FSV Albatross trawl which employs rollers.

e Model 1 is the least complex and easiest to apply to future survey results and addresses species
specific differences in relative catch efficiency which appear to be important particularly for little
and winter skate. This model would be easier to apply if we were to re-calibrate FSVA catches in
FSVB equivalents.

e Models 2 and 3 will respond better to changes in length frequency by season (3S) and region
(3SR) and be less sensitive to new recruitment (which is a desirable result because the calibration
coefficient appears to be considerably higher for small skates that are captured more efficiently
by the FSV Bigelow). Length based calibrations would complicate a conversion of FSVA
catches into FSVB equivalents.

e Model 3SR incorporates regional differences in relative catch efficiency and could be more
consistent with potentially establishing regionally based ABCs if the management unit is split to
protect overfished skates in the north. The consequences of a regional based ABC are however
unknown and may not be intuitive. Indirectly, it also addresses a species specific length based
calibration model because of the differential geographical distribution of various skate species.
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